Existence of solutions for a nonhomogeneous semilinear elliptic equation

被引:3
|
作者
Arcoya, David [1 ]
de Paiva, Francisco Odair [2 ]
Mendoza, Jose M. [2 ]
机构
[1] Univ Granada, Dept Math Anal, E-18071 Granada, Spain
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Semilinear elliptic problem; Variational methods; Existence of solution; INDEFINITE;
D O I
10.1016/j.na.2019.111728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a bounded domain Omega, a bounded Caratheodory function g in Omega x R, p > 1 and a nonnegative locally integrable function h in Omega which is strictly positive in a set of positive measure we prove that, contrarily with the case h equivalent to 0, there exists a solution of the semilinear elliptic problem {-Delta u = lambda u + g(x, u) - h vertical bar u vertical bar(p-1)u + f, in Omega u = 0, on partial derivative Omega, for every lambda is an element of R and f is an element of L-2(Omega). (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条