DERIVATIONS OF MURRAY-VON NEUMANN ALGEBRAS

被引:0
|
作者
Kadison, Richard V. [1 ]
Liu, Zhe [2 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
RINGS; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we study derivations of Murray-von Neumann algebras and their properties. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a von Neumann algebra of type II1 into that von Neumann algebra is 0. This result is an extension, in two ways, of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: the algebra may be non-commutative and contain unbounded elements. In another sense, as we indicate in the introduction, all the derivation results including ours extend what Singer's result says, that the derivation is the 0-mapping, numerically in our main theorem and cohomologically in our theorem on extended derivations. The cohomology in this case is the Hochschild cohomology for associative algebras.
引用
收藏
页码:206 / 228
页数:23
相关论文
共 50 条
  • [1] Derivations on Murray-von Neumann algebras
    Ber, A. F.
    Kudaybergenov, K. K.
    Sykochev, F. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (05) : 950 - 952
  • [2] Derivations of Murray-von Neumann algebras
    Ber, Aleksey
    Kudaybergenov, Karimbergen
    Sukochev, Fedor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (791): : 283 - 301
  • [3] A note on derivations of Murray-von Neumann algebras
    Kadison, Richard V.
    Liu, Zhe
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (06) : 2087 - 2093
  • [4] Notes on derivations of Murray-von Neumann algebras
    Ber, Aleksey
    Kudaybergenov, Karimbergen
    Sukochev, Fedor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (05)
  • [5] Ring derivations of Murray-von Neumann algebras
    Huang, Jinghao
    Kudaybergenov, Karimbergen
    Sukochev, Fedor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 672 : 28 - 52
  • [6] Reflexivity of Murray-von Neumann algebras
    Liu, Zhe
    OPERATOR ALGEBRAS AND THEIR APPLICATIONS: A TRIBUTE TO RICHARD V KADISON, 2016, 671 : 175 - 184
  • [7] Ring isomorphisms of Murray-von Neumann algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (05)
  • [8] A Murray-von Neumann Type Classification of C*-algebras
    Ng, Chi-Keung
    Wong, Ngai-Ching
    OPERATOR SEMIGROUPS MEET COMPLEX ANALYSIS, HARMONIC ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 250 : 369 - 395
  • [9] A double commutant theorem for Murray-von Neumann algebras
    Liu, Zhe
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (20) : 7676 - 7681
  • [10] Schur inequality for Murray-von Neumann algebras and its applications
    Ayupov, Shavkat
    Huang, Jinghao
    Kudaybergenov, Karimbergen
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (03)