Identification of Types of Corrosion through Electrochemical Noise using Machine Learning Techniques

被引:6
|
作者
Alves, Lorraine Marques [1 ]
Cotta, Romulo Almeida [1 ]
Ciarelli, Patrick Marques [1 ]
机构
[1] Univ Fed Espirito Santo, Ave Fernando Ferrari 514, Vitoria, ES, Brazil
关键词
Corrosion; Electrochemical Noise; Machine Learning; Wavelet Transform;
D O I
10.5220/0006122403320340
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several systems in industries are subject to the effects of corrosion, such as machines, structures and a lot of equipment. As consequence, the corrosion can damage structures and equipment, causing financial losses and accidents. Such consequences can be reduced considerably with the use of methods of detection, analysis and monitoring of corrosion in hazardous areas, which can provide useful information to maintenance planning and accident prevention. In this paper, we analyze features extracted from electrochemical noise to identify types of corrosion, and we use machine learning techniques to perform this task. Experimental results show that the features obtained using wavelet transform are effective to solve this problem, and all the five evaluated classifiers achieved an average accuracy above 90%.
引用
收藏
页码:332 / 340
页数:9
相关论文
共 50 条
  • [1] Identification of Corrosive Substances and Types of Corrosion Through Electrochemical Noise Using Signal Processing and Machine Learning
    Alves, Lorraine Marques
    Cotta, Romulo Almeida
    Ciarelli, Patrick Marques
    Salles, Evandro O. T.
    Coco, Klaus F.
    Samatelo, Jorge L. A.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2019, 30 (01) : 16 - 26
  • [2] Identification of Corrosive Substances and Types of Corrosion Through Electrochemical Noise Using Signal Processing and Machine Learning
    Lorraine Marques Alves
    Romulo Almeida Cotta
    Patrick Marques Ciarelli
    Evandro O. T. Salles
    Klaus F. Côco
    Jorge L. A. Samatelo
    Journal of Control, Automation and Electrical Systems, 2019, 30 : 16 - 26
  • [3] Identification of Ovarian mass through Ultrasound Images using Machine Learning Techniques
    Pathak, Hemita
    Kulkarni, Vrushali
    2015 IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2015, : 137 - 140
  • [4] Gender Identification Through Facebook Data Analysis Using Machine Learning Techniques
    Kiratsa, P. I.
    Sidiropoulos, G. K.
    Badeka, E. V.
    Papadopoulou, C. I.
    Nikolaou, A. P.
    Papakostas, G. A.
    22ND PAN-HELLENIC CONFERENCE ON INFORMATICS (PCI 2018), 2018, : 117 - 120
  • [5] Paraphrase Identification using Machine Learning Techniques
    Chitra, A.
    Kumar, C. S. Saravana
    RECENT ADVANCES IN NETWORKING, VLSI AND SIGNAL PROCESSING, 2010, : 245 - +
  • [6] Cybercrime: Identification and Prediction Using Machine Learning Techniques
    Veena, K.
    Meena, K.
    Kuppusamy, Ramya
    Teekaraman, Yuvaraja
    Angadi, Ravi V.
    Thelkar, Amruth Ramesh
    Computational Intelligence and Neuroscience, 2022, 2022
  • [7] Voice Disorder Identification by Using Machine Learning Techniques
    Verde, Laura
    De Pietro, Giuseppe
    Sannino, Giovanna
    IEEE ACCESS, 2018, 6 : 16246 - 16255
  • [8] Automatic Language Identification using Machine learning Techniques
    Venkatesan, Hariraj
    Venkatasubramanian, T. Varun
    Sangeetha, J.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018), 2018, : 583 - 588
  • [9] Software defect identification using machine learning techniques
    Ceylan, Evren
    Kudubay, F. Onur
    Bener, Ayse B.
    32ND EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS (SEAA) - PROCEEDINGS, 2006, : 240 - +
  • [10] Identification of Novel Antibacterials Using Machine Learning Techniques
    Ivanenkov, Yan A.
    Zhavoronkov, Alex
    Yamidanov, Renat S.
    Osterman, Ilya A.
    Sergiev, Petr V.
    Aladinskiy, Vladimir A.
    Aladinskaya, Anastasia V.
    Terentiev, Victor A.
    Veselov, Mark S.
    Ayginin, Andrey A.
    Kartsev, Victor G.
    Skvortsov, Dmitry A.
    Chemeris, Alexey V.
    Baimiev, Alexey Kh.
    Sofronova, Alina A.
    Malyshev, Alexander S.
    Filkov, Gleb I.
    Bezrukov, Dmitry S.
    Zagribelnyy, Bogdan A.
    Putin, Evgeny O.
    Puchinina, Maria M.
    Dontsova, Olga A.
    FRONTIERS IN PHARMACOLOGY, 2019, 10