Representations of SU(1,1) in non-commutative space generated by the Heisenberg algebra

被引:1
|
作者
Ahmedov, H
Duru, IH
机构
[1] Feza Gursey Inst, TR-81220 Istanbul, Turkey
[2] Trakya Univ, Dept Math, Edirne, Turkey
来源
关键词
D O I
10.1088/0305-4470/34/2/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
SU(1, 1) is considered as the automorphism group of the Heisenberg algebra H. The basis in the Hilbert space K of functions on H on which the irreducible representations of the group are realized is explicitly constructed. From group theoretical considerations summation formulae for the product of two, three and four hypergeometric functions are derived.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 50 条
  • [1] On the uniqueness of unitary representations of the non-commutative Heisenberg-Weyl algebra
    Gouba, L.
    Scholtz, F. G.
    CANADIAN JOURNAL OF PHYSICS, 2009, 87 (09) : 995 - 997
  • [2] Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra
    Mendes, R. Vilela
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [3] Coherent states of the deformed Heisenberg-Weyl algebra in non-commutative space
    Yin, QJ
    Zhang, JZ
    PHYSICS LETTERS B, 2005, 613 (1-2) : 91 - 96
  • [4] HILBERT SPACE REPRESENTATIONS OF THE QUANTUM *-ALGEBRA Uq(su1,1)
    Dubray, David
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (03) : 261 - 277
  • [5] OSCILLATOR REPRESENTATIONS OF THE LIE-ALGEBRA SU(1,1) AND THE QUANTUM ALGEBRA SUQ(1,1)
    HIRAYAMA, M
    YAMAKOSHI, H
    PROGRESS OF THEORETICAL PHYSICS, 1993, 90 (02): : 293 - 305
  • [6] Representations of the su(1,1) current algebra and probabilistic perspectives
    Floreani, Simone
    Jansen, Sabine
    Wagner, Stefan
    REVIEWS IN MATHEMATICAL PHYSICS, 2024,
  • [7] Entangled state representations in non-commutative space and their applications
    Jing, SC
    Liu, QY
    Fan, HY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (39): : 8409 - 8420
  • [8] REPRESENTATIONS OF THE QUANTUM ALGEBRA U(Q)(SU1,1)
    BURBAN, IM
    KLIMYK, AU
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09): : 2139 - 2151
  • [9] The non-commutative Weil algebra
    A. Alekseev
    E. Meinrenken
    Inventiones mathematicae, 2000, 139 : 135 - 172
  • [10] The non-commutative Weil algebra
    Alekseev, A
    Meinrenken, E
    INVENTIONES MATHEMATICAE, 2000, 139 (01) : 135 - 172