A note on algebraic multigrid methods for the discrete weighted Laplacian

被引:2
|
作者
Capizzano, Stefano Serra [2 ]
Tablino-Possio, Cristina [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Univ Insubria, Sede Como, Dipartimento Fis & Matemat, I-22100 Como, Italy
关键词
Algebraic multigrid; Structured matrices; OPTIMAL CONVERGENCE; TOEPLITZ; PRECONDITIONERS;
D O I
10.1016/j.camwa.2010.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent contributions, algebraic multigrid methods have been designed and studied from the viewpoint of spectral complementarity. In this note, we focus our efforts on specific applications and, more precisely, on large linear systems arising from the approximation of the weighted Laplacian with various boundary conditions. We adapt the multigrid idea to this specific setting and we present and critically discuss a wide set of numerical experiments showing the potentiality of the considered approach. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1290 / 1298
页数:9
相关论文
共 50 条
  • [1] Algebraic multigrid methods
    Xu, Jinchao
    Zikatanov, Ludmil
    ACTA NUMERICA, 2017, 26 : 591 - 721
  • [2] A NOTE ON THE VECTORIZATION OF ALGEBRAIC MULTIGRID ALGORITHMS
    HEMPEL, R
    THOMPSON, C
    APPLIED MATHEMATICS AND COMPUTATION, 1988, 26 (03) : 245 - 256
  • [3] ALGEBRAIC SPECTRAL MULTIGRID METHODS
    HEINRICHS, W
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 80 (1-3) : 281 - 286
  • [4] AN ALGEBRAIC INTERPRETATION OF MULTIGRID METHODS
    MCCORMICK, SF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (03) : 548 - 560
  • [5] Algebraic multigrid and algebraic multilevel methods: a theoretical comparison
    Notay, Y
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (5-6) : 419 - 451
  • [6] ALGEBRAIC MULTIGRID DOMAIN DECOMPOSITION METHODS
    KUZNETSOV, YA
    SOVIET JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1989, 4 (05): : 351 - 379
  • [7] Algebraic multigrid methods for Laplacians of graphs
    Bolten, Matthias
    Friedhoff, Stephanie
    Frommer, Andreas
    Heming, Matthias
    Kahl, Karsten
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (11) : 2225 - 2243
  • [8] An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation
    Airaksinen, Tuomas
    Heikkola, Erkki
    Pennanen, Anssi
    Toivanen, Jari
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 1196 - 1210
  • [9] LEAN ALGEBRAIC MULTIGRID (LAMG): FAST GRAPH LAPLACIAN LINEAR SOLVER
    Livne, Oren E.
    Brandt, Achi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : B499 - B522
  • [10] Multigrid methods: from geometrical to algebraic versions
    Haase, G
    Langer, U
    MODERN METHODS IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2002, 75 : 103 - 153