Personalized Cross-Silo Federated Learning on Non-IID Data

被引:0
|
作者
Huang, Yutao [1 ]
Chu, Lingyang [2 ]
Zhou, Zirui [3 ]
Wang, Lanjun [3 ]
Liu, Jiangchuan [1 ]
Pei, Jian [1 ]
Zhang, Yong [3 ]
机构
[1] Simon Fraser Univ, Burnaby, BC, Canada
[2] McMaster Univ, Hamilton, ON, Canada
[3] Huawei Technol Canada, Burnaby, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
VARIABLE SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
引用
收藏
页码:7865 / 7873
页数:9
相关论文
共 50 条
  • [1] Cross-Silo Prototypical Calibration for Federated Learning with Non-IID Data
    Qi, Zhuang
    Meng, Lei
    Chen, Zitan
    Hu, Han
    Lin, Hui
    Meng, Xiangxu
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3099 - 3107
  • [2] A Comprehensive Study on Personalized Federated Learning with Non-IID Data
    Yu, Menghang
    Zheng, Zhenzhe
    Li, Qinya
    Wu, Fan
    Zheng, Jiaqi
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 40 - 49
  • [3] Personalized Federated Learning over non-IID Data for Indoor Localization
    Wu, Peng
    Imbiriba, Tales
    Park, Junha
    Kim, Sunwoo
    Closas, Pau
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 421 - 425
  • [4] Communication-Efficient Personalized Federated Learning on Non-IID Data
    Li, Xiangqian
    Ma, Chunmei
    Huang, Baogui
    Li, Guangshun
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 562 - 569
  • [5] Federated learning on non-IID data: A survey
    Zhu, Hangyu
    Xu, Jinjin
    Liu, Shiqing
    Jin, Yaochu
    NEUROCOMPUTING, 2021, 465 : 371 - 390
  • [6] Adaptive Federated Learning With Non-IID Data
    Zeng, Yan
    Mu, Yuankai
    Yuan, Junfeng
    Teng, Siyuan
    Zhang, Jilin
    Wan, Jian
    Ren, Yongjian
    Zhang, Yunquan
    COMPUTER JOURNAL, 2023, 66 (11): : 2758 - 2772
  • [7] Federated Learning With Taskonomy for Non-IID Data
    Jamali-Rad, Hadi
    Abdizadeh, Mohammad
    Singh, Anuj
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8719 - 8730
  • [8] Federated Learning With Non-IID Data: A Survey
    Lu, Zili
    Pan, Heng
    Dai, Yueyue
    Si, Xueming
    Zhang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19188 - 19209
  • [9] A Survey of Federated Learning on Non-IID Data
    HAN Xuming
    GAO Minghan
    WANG Limin
    HE Zaobo
    WANG Yanze
    ZTECommunications, 2022, 20 (03) : 17 - 26
  • [10] Adaptive Personalized Federated Learning for Non-IID Data with Continual Distribution Shift
    Chen, Sisi
    Liu, Weijie
    Zhang, Xiaoxi
    Xu, Hong
    Lin, Wanyu
    Chen, Xu
    2024 IEEE/ACM 32ND INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE, IWQOS, 2024,