Graph Learning with Laplacian Constraints: Modeling Attractive Gaussian Markov Random Fields

被引:0
|
作者
Fgilmez, Hilmi E. [1 ]
Pavez, Eduardo [1 ]
Ortega, Antonio [1 ]
机构
[1] Univ Southern Calif, Signal & Image Proc Inst, Los Angeles, CA 90089 USA
来源
2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS | 2016年
关键词
Graph learning; sparse graph learning; graph estimation; optimization; graph Laplacian matrices; Gaussian Markov random fields (GMRFs); VARIABLE SELECTION; LASSO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graphs are fundamental mathematical structures used in various fields to represent data, signals and processes. This paper proposes a novel framework for learning graphs from data. The proposed framework (i) poses the graph learning problem as estimation of generalized graph Laplacian matrices and (ii) develops an efficient algorithm. Under specific statistical assumptions, the proposed formulation leads to modeling attractive Gaussian Markov random fields. Our experimental results show that the proposed algorithm outperforms sparse inverse covariance estimation methods in terms of graph learning performance.
引用
收藏
页码:1470 / 1474
页数:5
相关论文
共 50 条
  • [1] LEARNING IN GAUSSIAN MARKOV RANDOM FIELDS
    Riedl, Thomas J.
    Singer, Andrew C.
    Choi, Jun Won
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3070 - 3073
  • [2] Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields
    Koyakumaru, Tatsuya
    Yukawa, Masahiro
    Pavez, Eduardo
    Ortega, Antonio
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08)
  • [3] Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields
    Koyakumaru, Tatsuya
    Yukawa, Masahiro
    Pavez, Eduardo
    Ortega, Antonio
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (01) : 23 - 34
  • [4] A GRAPH LEARNING ALGORITHM BASED ON GAUSSIAN MARKOV RANDOM FIELDS AND MINIMAX CONCAVE PENALTY
    Koyakumaru, Tatsuya
    Yukawa, Masahiro
    Pavez, Eduardo
    Ortega, Antonio
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5410 - 5414
  • [5] Estimation of positive definite M-matrices and structure learning for attractive Gaussian Markov random fields
    Slawski, Martin
    Hein, Matthias
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 473 : 145 - 179
  • [6] Learning Graph Structures in Discrete Markov Random Fields
    Wu, Rui
    Srikant, R.
    Ni, Jian
    2012 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2012, : 214 - 219
  • [7] Fitting Gaussian Markov random fields to Gaussian fields
    Rue, H
    Tjelmeland, H
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 31 - 49
  • [8] Deep Gaussian Markov Random Fields for Graph-Structured Dynamical Systems
    Lippert, Fiona
    Kranstauber, Bart
    van Loon, E. Emiel
    Forre, Patrick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Efficient methods for Gaussian Markov random fields under sparse linear constraints
    Bolin, David
    Wallin, Jonas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [10] Modeling material stress using integrated Gaussian Markov random fields
    Marcy, Peter W.
    Vander Wiel, Scott A.
    Storlie, Curtis B.
    Livescu, Veronica
    Bronkhorst, Curt A.
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (09) : 1616 - 1636