This brief review provides a general account of work directed at the use of catalytic combustion in gas turbine engines. A major potential advantage of using catalytic combustion is that the fuel can be burnt efficiently at temperatures low enough (<1500''C) to avoid significant oxidation of atmospheric nitrogen. This advantage was less important when catalytic combustion was demonstrated in the 1970's than it is today and received relatively little attention until the following decade. After discussion of the principles involved in the design of a combustor that must meet the mixing, size, performance and durability goals of a based gas turbine application, the review turns to accounts of experiments conducted on a laboratory scale with simple configurations. These established basic operating parameters for satisfactory combustion performance and led to larger scale work and to prototype design concepts for industrial gas turbines in the late 70's and early 80's. Test results were encouraging but were not pursued definitively in the U.S.A. Activity continued at several centres in Japan, with exploration of a number of different catalyst arrangements, geometries, and control systems, again with encouraging results. At the same time, there has been renewed interests in the U.S.A, and in Europe, spurred largely by the emphasis on reducing emissions of nitrogen oxides (NOx). The paper concludes with suggestions for further development of catalytically stabilized combustion systems for gas turbines. These systems must ensure adequate pre-catalyst temperature, with evenly premixed fuel and air, and sufficient temperature rise across the catalyst to ensure effective completion of reaction in a homogeneous reaction mode. The outstanding problems are largely concerned with questions of catalyst integrity and longevity in practical configurations and realistic engine operating conditions.