Biological, geological and chemical effects of oxygen injection in underground gas storage aquifers in the setting of biomethane deployment

被引:10
|
作者
Haddad, Perla G. [1 ]
Mura, Jean [1 ]
Casteran, Franck [1 ,2 ]
Guignard, Marion [3 ]
Ranchou-Peyruse, Magali [1 ,2 ,3 ]
Senechal, Pascale [4 ]
Larregieu, Marie [3 ]
Isaure, Marie-Pierre [3 ]
Svahn, Isabelle [5 ]
Moonen, Peter [4 ]
Le Hecho, Isabelle [2 ,3 ]
Hoareau, Guilhem [6 ]
Chiquet, Pierre [2 ,7 ]
Caumette, Guilhem [2 ,7 ]
Dequidt, David [8 ]
Cezac, Pierre [1 ,2 ]
Ranchou-Peyruse, Anthony [2 ,3 ]
机构
[1] Univ Pau & Pays Adour, LaTEP, E2S UPPA, Pau, France
[2] UPPA E2S Terega, Joint Lab SEnGA, F-64000 Pau, France
[3] Univ Pau & Pays Adour, IPREM, CNRS, E2S UPPA, Pau, France
[4] Univ Pau & Pays Adour, E2S UPPA, CNRS, DMEX, Pau, France
[5] Univ Bordeaux, Bordeaux Imaging Ctr BIC, CNRS, Bordeaux, France
[6] Univ Pau & Pays Adour, E2S UPPA, CNRS, TOTAL,LFCR, Pau, France
[7] Terega, Pau, France
[8] STORENGY Geosci Dept, Bois Colombes, France
关键词
Deep aquifers; Biomethane; Oxygen; Deep subsurface; High pressure; UGS; Geological storage; SULFATE-REDUCING BACTERIA; ARCHAEAL COMMUNITY; GEOCHEMICAL IMPACT; CO2; ENRICHMENT; BENZENE; FIELD; DEEP; AMPLIFICATION; DEGRADATION;
D O I
10.1016/j.scitotenv.2021.150690
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The last few years have seen the proliferation of anaerobic digestion plants to produce biomethane. Oxygen (O-2) traces added to biogas during the desulfurization process are co-injected in the gas network and can be stored in Underground Gas Storage (UGS). However, there are no data available for the undesirable effects of O-2 on these anoxic environments, especially on deep aquifers. In addition to mineral alteration, O-2 can have an impact on the anaerobic autochthonous microbial life. In our study, the storage conditions of an UGS aquifer were reproduced in a high-pressure reactor and bio-geo-chemical interactions between the aqueous, gas and solid phases were studied. Sulfate was depleted from the liquid phase for three consecutive times during the first 130 days of incubation reproducing the storage conditions (36 degrees C, 60 bar, methane with 1% CO2). Sulfate-reducers, such as Desulfovibrionaceae, were identified from the high-pressure system. Simulations with PHREEQC were used to determine the thermodynamic equilibrium to confirm any gas consumption. CO2 quantities decreased in the gas phase, suggesting its use as carbon source by microbial life. Benzene and toluene, hydrocarbons found in traces and known to be biodegradable in storages, were monitored and a decrease of toluene was revealed and associated to the Peptococcaceae family. Afterwards, O-2 was added as 1% of the gas phase, corresponding to the maximum quantity found in biomethane after desulfurization process. Re-oxidation of sulfide to sulfate was observed along with the end of sulfate reducing activity and toluene biodegradation and the disappearance of most of the community. H-2 surprisingly appeared and accumulated as soon as hydrogenotrophic sulfate-reducers decreased. H-2 would be produced via the necromass fermentation accomplished by microorganisms able to resist the oxic conditions of 4.42.10(-4) mol.Kgw(-1) of O-2. The solid phase composed essentially of quartz, presented no remarkable changes. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 5 条
  • [1] Underground Gas Storage in Saline Aquifers: Geological Aspects
    Uliasz-Misiak, Barbara
    Misiak, Jacek
    ENERGIES, 2024, 17 (07)
  • [2] Optimization of geological modeling algorithm for underground gas storage in aquifers.
    Degterev, A. Yu.
    Iskhakov, A. Ya.
    Kan, V. E.
    GEORESURSY, 2010, 36 (04) : 12 - 16
  • [3] Physicochemical and microbiological effects of geological biomethane storage in deep aquifers: introduction of O2 as a cocontaminant
    Haddad, P. G.
    Ranchou-Peyruse, M.
    Guignard, M.
    Mura, J.
    Casteran, F.
    Senechal, P.
    Larregieu, M.
    Isaure, M. -P.
    Moonen, P.
    Le Hecho, I.
    Hoareau, G.
    Chiquet, P.
    Caumette, G.
    Petit, A.
    Cezac, P.
    Ranchou-Peyruse, A.
    ENVIRONMENTAL SCIENCE-ADVANCES, 2023, 2 (12): : 1727 - 1738
  • [4] Fine 3D geological modeling method for underground gas storage and application in injection production optimization
    Feng, Hao
    Wang, Zhechao
    Min, Zhongshun
    Qiao, Liping
    Guo, Jiafan
    Liu, Jie
    Zhao, Guoguang
    GAS SCIENCE AND ENGINEERING, 2025, 134
  • [5] Effects of geological heterogeneity on gas mixing during underground hydrogen storage (UHS) in braided-fluvial reservoirs
    Bo, Zhenkai
    Horning, Sebastian
    Underschultz, Jim R.
    Garnett, Andrew
    Hurter, Suzanne
    FUEL, 2024, 357