A nanotubular TiO2/SiOx/Si composite derived from cellulosic cotton as an anode material for lithium-ion batteries with enhanced electrochemical performance

被引:11
|
作者
Li, Jiao [1 ,2 ]
Li, Yuanbiao [1 ,2 ]
Shi, Jiao [1 ,2 ]
Liu, Haibin [1 ,2 ]
Wang, Dewen [1 ,2 ]
Zhai, Wenlu [1 ,2 ]
Meng, Zhaoxu [1 ,2 ]
机构
[1] Shijiazhuang Tiedao Univ, Sch Mat Sci & Engn, Shijiazhuang 050043, Hebei, Peoples R China
[2] Hebei Key Lab Adv Mat Transportat Engn & Environm, Shijiazhuang 050043, Hebei, Peoples R China
关键词
Biotemplate synthesis; TiO2/SiOx/Si composite; Hierarchical structure; Anodes; Lithium-ion batteries; NANOSPHERES; SUBSTANCE;
D O I
10.1016/j.colsurfa.2021.126870
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A TiO2/SiOx/Si composite derived from cellulosic cotton as the structural template was biomimetically synthesized. Modified sol-gel deposition processes were performed to coat each cellulose nanofiber with a SiO2 thin gel layer, followed by layer-by-layer self-assembly processes to form an external TiO2 coating with controllable thickness. The resulted matter was calcined in air to obtain the TiO2/SiO2 composite, which was successively put in N-2 atmosphere and treated with magnesiothermic reduction reaction, resulting in the final TiO2/SiOx/Si composite. The composite possessed a typical hierarchical three-dimensional (3D) nanotubular network microstructure precisely inherited from the cellulosic cotton template, and each nanotube had a core-shell nanostructure with Si-based matters as the core and TiO2 coating as the shell. Compared with the bare nanotubular SiOx/Si material, the TiO2/SiOx/Si composite showed a highly enhanced electrochemical performance as an anode material for lithium-ion batteries (LIBs), delivering an initial discharge capacity of 2370 mAh g(-1) at a current density of 0.2 A g(-1) (an initial Coulombic efficiency of 56.4%), a reversible capacity of 682 mAh g(-1) after 100 discharge/charge cycles, and a discharge capacity of 241 mAh g(-1) at a high current density of 2.0 A g(-1). The excellent specific capacity, cycling stability and rate capability are ascribed to the synergistic effect of the unique 3D porous nanotubular network structure and the uniform TiO2 coating layer, which accommodates the volume variation of Si-based components during cycling, offers sufficient ion transport pathways and improves the electron transfer efficiency. This work provides a facile biomass-based strategy for fabrication of metal oxide/Si composites with well-defined microstructures that exhibit significant potential as anode materials for LIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Preparation and Electrochemical Performance of Si@C/SiOx as Anode Material for Lithium-ion Batteries
    Yang Tao
    Li Xiao
    Tian Xiao-Dong
    Song Yan
    Liu Zhan-Jun
    Guo Quan-Gui
    JOURNAL OF INORGANIC MATERIALS, 2017, 32 (07) : 699 - 704
  • [2] Enhanced electrochemical performance of carbon-coated TiO2 nanobarbed fibers as anode material for lithium-ion batteries
    De Pham-Cong
    Kim, Jae-Hyun
    Jeong, Se-Young
    Choi, Jun Hee
    Kim, Jinwoo
    Cho, Chae-Ryong
    ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 : 204 - 207
  • [3] Electrochemical properties of rutile TiO2 nanorods as anode material for lithium-ion batteries
    Qiao, Hui
    Luo, Qiaohui
    Wei, Qufu
    Cai, Yibing
    Huang, Fenglin
    IONICS, 2012, 18 (07) : 667 - 672
  • [4] Electrochemical properties of rutile TiO2 nanorods as anode material for lithium-ion batteries
    Hui Qiao
    Qiaohui Luo
    Qufu Wei
    Yibing Cai
    Fenglin Huang
    Ionics, 2012, 18 : 667 - 672
  • [5] Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries
    Xu, Jinwei
    Jia, Caihong
    Cao, Bin
    Zhang, W. F.
    ELECTROCHIMICA ACTA, 2007, 52 (28) : 8044 - 8047
  • [6] Preparation and electrochemical performance of TiO2/C composite nanotubes as anode materials of lithium-ion batteries
    Zhang, Jingwei
    Yan, Xiangxia
    Zhang, Jiwei
    Cai, Wei
    Wu, Zhisheng
    Zhang, Zhijun
    JOURNAL OF POWER SOURCES, 2012, 198 : 223 - 228
  • [7] Electrochemical Properties of Chemically Processed SiOx as Coating Material in Lithium-Ion Batteries with Si Anode
    Jeong, Hee-June
    Yang, Hyeon-Woo
    Yun, Kang-Seop
    Noh, Eul
    Jung, Sang-Chul
    Kang, Wooseung
    Kim, Sun-Jae
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [8] SiOx/C composite from rice husks as an anode material for lithium-ion batteries
    Ju, Yanming
    Tang, Joel A.
    Zhu, Kai
    Meng, Yuan
    Wang, Chunzhong
    Chen, Gang
    Wei, Yingjin
    Gao, Yu
    ELECTROCHIMICA ACTA, 2016, 191 : 411 - 416
  • [9] Preparation and Electrochemical Performance of Porous Si/SiOx/G Composite Anode for Lithium Ion Batteries
    Wang, Jing
    Zhang, Xiaoyan
    Wang, Ran
    Tan, Guoqiang
    Su, Yuefeng
    Wu, Feng
    7TH ANNUAL INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND ENVIRONMENTAL ENGINEERING, 2020, 735
  • [10] Electrochemical properties of a mesoporous Si/TiO2 nanocomposite film anode for lithium-ion batteries
    Zeng, Z. Y.
    Tu, J. P.
    Huang, X. H.
    Wang, X. L.
    Zhao, X. B.
    Li, K. F.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (06) : A105 - A107