Regular Incidence Complexes, Polytopes, and C-Groups

被引:1
|
作者
Schulte, Egon [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
Abstract polytope; Regular polytope; C-group; Incidence geometries; POLYGONAL COMPLEXES; CHIRAL POLYTOPES; EXTENSIONS; SPACE;
D O I
10.1007/978-3-319-78434-2_18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regular incidence complexes are combinatorial incidence structures generalizing regular convex polytopes, regular complex polytopes, various types of incidence geometries, and many other highly symmetric objects. The special case of abstract regular polytopes has been well-studied. The paper describes the combinatorial structure of a regular incidence complex in terms of a system of distinguished generating subgroups of its automorphism group or a flag-transitive subgroup. Then the groups admitting a flag-transitive action on an incidence complex are characterized as generalized string C-groups. Further, extensions of regular incidence complexes are studied, and certain incidence complexes particularly close to abstract polytopes, called abstract polytope complexes, are investigated.
引用
收藏
页码:311 / 333
页数:23
相关论文
共 50 条
  • [1] QUOTIENTS OF POLYTOPES AND C-GROUPS
    MCMULLEN, P
    SCHULTE, E
    DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (04) : 453 - 464
  • [2] Semiregular polytopes and amalgamated C-groups
    Monson, B.
    Schulte, Egon
    ADVANCES IN MATHEMATICS, 2012, 229 (05) : 2767 - 2791
  • [3] SOLVABLE C-GROUPS
    VIVO, CD
    RICERCHE DI MATEMATICA, 1972, 21 (01) : 75 - &
  • [4] CONVOLUTED C-GROUPS
    Kostic, Marko
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2008, 84 (98): : 73 - 95
  • [5] On a method of constructing C-groups
    Kuz'min, YV
    IZVESTIYA MATHEMATICS, 1995, 59 (04) : 765 - 783
  • [6] C-groups of Suzuki type
    Connor, Thomas
    Leemans, Dimitri
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 849 - 860
  • [7] C-groups of Suzuki type
    Thomas Connor
    Dimitri Leemans
    Journal of Algebraic Combinatorics, 2015, 42 : 849 - 860
  • [8] A geometric realization of c-groups
    Kulikov, VS
    RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1995, 45 (01): : 197 - 206
  • [9] C-GROUPS AND MIXED C-GROUPS OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES
    El Amrani, Abdelkhalek
    Blali, Aziz
    Ettayb, Jawad
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (01): : 185 - 201
  • [10] C-groups of high rank for the symmetric groups
    Fernandes, Maria Elisa
    Leemans, Dimitri
    JOURNAL OF ALGEBRA, 2018, 508 : 196 - 218