Optimization of electrode-electrolyte interface structure for solid oxide fuel cell cathode

被引:21
|
作者
He, An [1 ]
Onishi, Junya [1 ]
Shikazono, Naoki [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
关键词
Solid oxide fuel cell; Numerical optimization; Electrode-electrolyte interface; Reaction rate; Ionic conductivity; NUMERICAL-SIMULATION; COMPOSITE CATHODE; ACTIVE THICKNESS; MODEL; PERFORMANCE;
D O I
10.1016/j.jpowsour.2019.227565
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A numerical method is developed to optimize the shape of electrode-electrolyte interface for maximizing the electrochemical performance of solid oxide fuel cells (SOFCs). The electrode-electrolyte interface structure is chosen as the design variable to be optimized, and the total amount of reaction current in the electrode is maximized as the objective function. Adjoint method is used to compute the sensitivity of the design parameter on the objective function, i.e. the sensitivity of the interface shape on the total reaction current is investigated. In this study, pure La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode and Gd0.1Ce0.9O1.95 (GDC) electrolyte is chosen for the design target. Both LSCF/pore double phase boundary (DPB) reaction and LSCF/GDC/pore triple phase boundary (TPB) reaction are considered. It is found from the computational results that the cathode with optimized electrode-electrolyte interface structure largely enhances the reaction current than the flat electrode-electrolyte interface. Finally, the sensitivities of the optimal sturcture on the conductivities and reaction rates are investigated.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Percolation modeling investigation of TPB formation in a solid oxide fuel cell electrode-electrolyte interface
    Martinez, Andrew S.
    Brouwer, Jacob
    ELECTROCHIMICA ACTA, 2008, 53 (10) : 3597 - 3609
  • [2] Computational engineering of the oxygen electrode-electrolyte interface in solid oxide fuel cells
    Cheng, Kaiming
    Xu, Huixia
    Zhang, Lijun
    Zhou, Jixue
    Wang, Xitao
    Du, Yong
    Chen, Ming
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [3] Computational engineering of the oxygen electrode-electrolyte interface in solid oxide fuel cells
    Kaiming Cheng
    Huixia Xu
    Lijun Zhang
    Jixue Zhou
    Xitao Wang
    Yong Du
    Ming Chen
    npj Computational Materials, 7
  • [4] Design guidelines for the manufacturing of the electrode-electrolyte interface of solid oxide fuel cells
    Chueh, Chih-Che
    Bertei, Antonio
    Nicolella, Cristiano
    JOURNAL OF POWER SOURCES, 2019, 437
  • [5] Modeling and comparison to literature data of composite solid oxide fuel cell electrode-electrolyte interface conductivity
    Martinez, Andrew S.
    Brouwer, Jacob
    JOURNAL OF POWER SOURCES, 2010, 195 (21) : 7268 - 7277
  • [6] Interdiffusion across Electrode-Electrolyte Interface in Solid Oxide Fuel Cell Incorporating the Finite Size Effect of the Ions
    Kumar, Manoj
    Chakraborty, Jeevanjyoti
    Das, Prasanta Kumar
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (14) : F1184 - F1191
  • [7] Investigation of oxide ion flux at cathode/electrolyte interface in solid oxide fuel cell
    Nagasawa, Tsuyoshi
    Hanamura, Katsunori
    JOURNAL OF POWER SOURCES, 2019, 412 : 695 - 700
  • [8] Microextrusion printing for increasing electrode-electrolyte interface in anode-supported solid oxide fuel cells
    Seo, Haewon
    Iwai, Hiroshi
    Kishimoto, Masashi
    Ding, Changsheng
    Saito, Motohiro
    Yoshida, Hideo
    JOURNAL OF POWER SOURCES, 2020, 450
  • [9] Field effect at oxide electrode-electrolyte interface
    Ghowsi, K
    Naghshineh, S
    Houlne, MP
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 1995, 31 (12) : 1259 - 1268
  • [10] The Electrode-Electrolyte Interface in Acidic and Alkaline Fuel Cells
    Sprague, Isaac B.
    Dutta, Prashanta
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 547 - 552