Bi-Lipschitz geometry of weighted homogeneous surface singularities

被引:10
|
作者
Birbrair, Lev [2 ]
Fernandes, Alexandre [2 ]
Neumann, Walter D. [1 ]
机构
[1] Columbia Univ, Barnard Coll, Dept Math, New York, NY 10027 USA
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
基金
美国国家科学基金会;
关键词
14B05; 14J17; 32S25;
D O I
10.1007/s00208-008-0225-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a weighted homogeneous complex surface singularity is metrically conical (i.e., bi-Lipschitz equivalent to a metric cone) only if its two lowest weights are equal. We also give an example of a pair of weighted homogeneous complex surface singularities that are topologically equivalent but not bi-Lipschitz equivalent.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [1] Bi-Lipschitz geometry of weighted homogeneous surface singularities
    Lev Birbrair
    Alexandre Fernandes
    Walter D. Neumann
    Mathematische Annalen, 2008, 342 : 139 - 144
  • [2] Bi-Lipschitz geometry of complex surface singularities
    Birbrair, Lev
    Fernandes, Alexandre
    Neumann, Walter D.
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 259 - 267
  • [3] Bi-Lipschitz geometry of complex surface singularities
    Lev Birbrair
    Alexandre Fernandes
    Walter D. Neumann
    Geometriae Dedicata, 2009, 139 : 259 - 267
  • [4] Multiplicity of singularities is not a bi-Lipschitz invariant
    Birbrair, Lev
    Fernandes, Alexandre
    Edson Sampaio, J.
    Verbitsky, Misha
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 115 - 121
  • [5] Multiplicity of singularities is not a bi-Lipschitz invariant
    Lev Birbrair
    Alexandre Fernandes
    J. Edson Sampaio
    Misha Verbitsky
    Mathematische Annalen, 2020, 377 : 115 - 121
  • [6] Bi-Lipschitz geometry of quasiconformal trees
    David, Guy C.
    Vellis, Vyron
    ILLINOIS JOURNAL OF MATHEMATICS, 2022, 66 (02) : 189 - 244
  • [7] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    F. Baudier
    P. Motakis
    Th. Schlumprecht
    A. Zsák
    Discrete & Computational Geometry, 2021, 66 : 203 - 235
  • [8] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    Baudier, F.
    Motakis, P.
    Schlumprecht, Th.
    Zsak, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 203 - 235
  • [9] RIGIDITY OF BI-LIPSCHITZ EQUIVALENCE OF WEIGHTED HOMOGENEOUS FUNCTION-GERMS IN THE PLANE
    Fernandes, Alexandre
    Ruas, Maria
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (04) : 1125 - 1133
  • [10] BI-LIPSCHITZ AND DIFFERENTIABLE SUFFICIENCY OF WEIGHTED JETS
    Ferreira Costa, Joao Carlos
    Saia, Marcelo Jose
    Soares Junior, Carlos Humberto
    JOURNAL OF SINGULARITIES, 2022, 25 : 123 - 133