Optical diagnostics of laser-produced plasmas

被引:79
|
作者
Harilal, S. S. [1 ]
Phillips, M. C. [2 ]
Froula, D. H. [3 ]
Anoop, K. K. [4 ]
Issac, R. C. [4 ]
Beg, F. N. [5 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[2] Univ Arizona, James C Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[3] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[4] Cochin Univ Sci & Technol, Dept Phys, Cochin 682022, Kerala, India
[5] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
关键词
INDUCED BREAKDOWN SPECTROSCOPY; URANIUM ISOTOPE RATIOS; ION-ACOUSTIC-WAVES; ELECTRON-DENSITY MEASUREMENTS; INDUCED-FLUORESCENCE; SOLID SAMPLES; TEMPERATURE-MEASUREMENTS; ABSORPTION-SPECTROSCOPY; EMISSION-SPECTROSCOPY; RESOLVED ABSORPTION;
D O I
10.1103/RevModPhys.94.035002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Laser-produced plasmas (LPPs) engulf exotic and complex conditions ranging in temperature, density, pressure, magnetic and electric fields, charge states, charged particle kinetics, and gas-phase reactions based on the irradiation conditions, target geometries, and background cover gas. The application potential of the LPP is so diverse that it generates considerable interest for both basic and applied research areas. The fundamental research on LPPs can be traced back to the early 1960s, immediately after the invention of the laser. In the 1970s, the laser was identified as a tool to pursue inertial confinement fusion, and since then several other technologies have emerged out of LPPs. These applications prompted the development and adaptation of innovative diagnostic tools for understanding the fundamental nature and spatiotemporal properties of these complex systems. Although most of the traditional characterization techniques developed for other plasma sources can be used to characterize the LPPs, care must be taken to interpret the results because of their small size, transient nature, and inhomogeneities. The existence of the large spatiotemporal density and temperature gradients often necessitates nonuniform weighted averaging over distance and time. Among the various plasma characterization tools, optical-based diagnostic tools play a key role in the accurate measurements of LPP parameters. The optical toolbox contains optical spectroscopy (emission, absorption, and fluorescence), as well as passive and active imaging and optical probing methods (shadowgraphy, Schlieren imaging, interferometry, Thomson scattering, deflectometry, and velocimetry). Each technique is useful for measuring a specific property, and its use is limited to a certain time span during the LPP evolution because of the sensitivity issues related to the selected measuring tool. Therefore, multiple diagnostic tools are essential for a comprehensive insight into the entire plasma behavior. Recent improvements in performance in laser and detector systems have expanded the capability of the aforementioned passive and active diagnostic tools. This review provides an overview of optical diagnostic tools frequently employed for the characterization of the LPPs and emphasizes techniques, associated assumptions, and challenges. Considering that most of the industrial and other applications of the LPP belong to low to moderate laser intensities (10(8)-10(15) W cm(-2)), this review focuses on diagnostic tools pertaining to this regime.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] OPTICAL DIAGNOSTICS OF LASER-PRODUCED PLASMAS AT UCLA
    CLAYTON, CE
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1985, 56 (05): : 995 - 999
  • [2] Diagnostics of laser-produced plasmas
    Batani, Dimitri
    Morace, Alessio
    Maheut, Yohann
    Jakubowska, Katarzyna
    Volpe, Luca
    NUKLEONIKA, 2016, 61 (04) : 393 - 401
  • [3] OPTICAL DIAGNOSTICS OF LASER-PRODUCED PLASMAS WITH ULTRASHORT LASER-PULSES
    SIGEL, R
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 298 (1439): : 407 - 414
  • [4] Optical diagnostics of laser-produced aluminium plasmas under water
    N. Walsh
    J. T. Costello
    T. J. Kelly
    Applied Physics B, 2017, 123
  • [5] Optical diagnostics of laser-produced aluminium plasmas under water
    Walsh, N.
    Costello, J. T.
    Kelly, T. J.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2017, 123 (06):
  • [6] Optical Time-Resolved Diagnostics of Laser-Produced Plasmas
    Batani, D.
    Santos, J.
    Forestier-Colleoni, P.
    Mancelli, D.
    Ehret, M.
    Trela, J.
    Morace, A.
    Jakubowska, K.
    Antonelli, L.
    del Sorbo, D.
    Manclossi, M.
    Veltcheva, M.
    JOURNAL OF FUSION ENERGY, 2019, 38 (3-4) : 299 - 314
  • [7] Optical Time-Resolved Diagnostics of Laser-Produced Plasmas
    D. Batani
    J. Santos
    P. Forestier-Colleoni
    D. Mancelli
    M. Ehret
    J. Trela
    A. Morace
    K. Jakubowska
    L. Antonelli
    D. del Sorbo
    M. Manclossi
    M. Veltcheva
    Journal of Fusion Energy, 2019, 38 : 299 - 314
  • [8] Optical diagnostics of laser-produced plasmas ( vol 94, 035002 ,2022)
    Harilal, S. S.
    Phillips, M. C.
    Froula, D. H.
    Anoop, K. K.
    Issac, R. C.
    Beg, F. N.
    REVIEWS OF MODERN PHYSICS, 2024, 96 (01)
  • [9] REFRACTIVE FRINGE DIAGNOSTICS OF LASER-PRODUCED PLASMAS
    MICHAELIS, MM
    WILLI, O
    OPTICS COMMUNICATIONS, 1981, 36 (02) : 153 - 158
  • [10] RESONANT DIAGNOSTICS OF LASER-PRODUCED BA PLASMAS
    MOSTOVYCH, AN
    RIPIN, BH
    STAMPER, JA
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1988, 59 (08): : 1497 - 1499