ONLINE ADAPTIVE PERSONALIZATION FOR FACE ANTI-SPOOFING

被引:1
|
作者
Belli, Davide [1 ]
Das, Debasmit [1 ]
Major, Bence [1 ]
Porikli, Fatih [1 ]
机构
[1] Qualcomm AI Res, San Diego, CA 92121 USA
关键词
Face anti-spoofing; personalization; online learning; unsupervised adaptation; DOMAIN ADAPTATION;
D O I
10.1109/ICIP46576.2022.9897641
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face authentication systems require a robust anti-spoofing module as they can be deceived by fabricating spoof images of authorized users. Most recent face anti-spoofing methods rely on optimized architectures and training objectives to alleviate the distribution shift between train and test users. However, in real online scenarios, past data from a user contains valuable information that could be used to alleviate the distribution shift. We thus introduce OAP (Online Adaptive Personalization): a lightweight solution which can adapt the model online using unlabeled data. OAP can be applied on top of most anti-spoofing methods without the need to store original biometric images. Through experimental evaluation on the SiW dataset, we show that OAP improves recognition performance of existing methods on both single video setting and continual setting, where spoof videos are interleaved with live ones to simulate spoofing attacks. We also conduct ablation studies to confirm the design choices for our solution.
引用
收藏
页码:351 / 355
页数:5
相关论文
共 50 条
  • [1] An adaptive index smoothing loss for face anti-spoofing
    Wang, Caixun
    Zhou, Jie
    PATTERN RECOGNITION LETTERS, 2022, 153 : 168 - 175
  • [2] Surveillance Face Anti-Spoofing
    Fang, Hao
    Liu, Ajian
    Wan, Jun
    Escalera, Sergio
    Zhao, Chenxu
    Zhang, Xu
    Li, Stan Z.
    Lei, Zhen
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1535 - 1546
  • [3] Face anti-spoofing methods
    Parveen, Sajida
    Ahmad, Sharifah Mumtazah Syed
    Hanafi, Marsyita
    Adnan, Wan Azizun Wan
    CURRENT SCIENCE, 2015, 108 (08): : 1491 - 1500
  • [4] Towards face anti-spoofing
    Syed, Muhammad Ibrahim
    Asif, Amina
    Shahzad, Mohsin
    Khan, Uzair
    Khan, Sumair
    Mahmood, Zahid
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2023,
  • [5] A Review on Face Anti-spoofing
    Jiang F.-L.
    Liu P.-C.
    Zhou X.-D.
    Zhou, Xiang-Dong (zhouxiangdong@cigit.ac.cn), 1799, Science Press (47): : 1799 - 1821
  • [6] Adaptive Normalized Representation Learning for Generalizable Face Anti-Spoofing
    Liu, Shubao
    Zhang, Ke-Yue
    Yao, Taiping
    Bi, Mingwei
    Ding, Shouhong
    Li, Jilin
    Huang, Feiyue
    Ma, Lizhuang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1469 - 1477
  • [7] Adaptive Mixture of Experts Learning for Generalizable Face Anti-Spoofing
    Zhou, Qianyu
    Zhang, Ke-Yue
    Yao, Taiping
    Yi, Ran
    Ding, Shouhong
    Ma, Lizhuang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6009 - 6018
  • [8] Detection of Spoofing Medium Contours for Face Anti-Spoofing
    Zhu, Xun
    Li, Sheng
    Zhang, Xinpeng
    Li, Haoliang
    Kot, Alex C.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 2039 - 2045
  • [9] Face Anti-spoofing Based on Motion
    Wang, Ran
    Xiao, Jing
    Hu, Ruimin
    Wang, Xu
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 202 - 211
  • [10] A Personalized Benchmark for Face Anti-spoofing
    Belli, Davide
    Das, Debasmit
    Major, Bence
    Porikli, Fatih
    2022 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2022), 2022, : 338 - 348