Ni Nano-particle Encapsulated in Hollow Carbon Sphere Electrocatalyst in Polymer Electrolyte Membrane Water Electrolyzer

被引:15
|
作者
Chattopadhyay, Jayeeta [1 ]
Pathak, Tara Sankar [2 ]
Srivastava, R. [1 ,3 ]
Singh, A. C. [1 ]
机构
[1] Birla Inst Technol, Dept Appl Chem, Deoghar 814142, Jharkhand, India
[2] Surendra Inst Engn & Management, Dept Chem, Darjeeling 734009, W Bengal, India
[3] Indian Inst Sci, Dept Inorgan & Phys Chem, Bangalore 560012, Karnataka, India
关键词
Hollow carbon spheres; Nickel encapsulation; Polymer Electrolyte Membrane; Cyclic voltammetry; Water Electrolyzer; MESOPOROUS SHELL CARBON; LITHIUM-ION BATTERIES; ANODE MATERIAL; FUEL-CELLS; EVOLUTION REACTION; PERFORMANCE; CATALYST; HYDROGEN; ELECTROOXIDATION; NANOPARTICLES;
D O I
10.1016/j.electacta.2015.03.122
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The present study evaluates the synthesis by solvo-thermal method and electrocatalytic activity of nickel nano-particles encapsulated in hollow carbon sphere, in hydrogen and oxygen evolution reaction in PEM water electrolyzer. The XRD patterns have ascertained the formation of nickel metal with different planes in face centered cubic (fcc) and hexagonal closed pack (hcp) form. SEM and TEM images have confirmed the nickel nano-particles with diameter of 10-50 nm inside the 0.2 mu m sized hollow carbon spheres. The BET surface area values gradually decreased with greater encapsulation of nickel; although the electrochemical active surface area (ECSA) values have been calculated as quite higher. It confirms the well dispersion of nickel in the materials and induces their electrocatalytic performance through the active surface sites. The cyclic voltammetric studies have evaluated hydrogen desorption peaks as five times more intense in nickel encapsulated materials, in comparison to the pure hollow carbon spheres. The anodic peak current density value has reached the highest level of 1.9 A cm(-2) for HCSNi10, which gradually decreases with lesser amount of nickel in the electrocatalysts. These electrocatalysts have been proved electrochemically stable during their usage for 48 h long duration under potentiostatic condition. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 50 条
  • [1] A multiscale physical model of a polymer electrolyte membrane water electrolyzer
    Oliveira, Luiz Fernando L.
    Jallut, Christian
    Franco, Alejandro A.
    ELECTROCHIMICA ACTA, 2013, 110 : 363 - 374
  • [2] Degradation analysis of polymer electrolyte membrane water electrolyzer with different membrane thicknesses
    Phan, Thanh Thien
    Kim, Sang-Kyung
    Islam, Jahowa
    Kim, Min-Joong
    Lee, Jae-Hun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 875 - 885
  • [3] Engineering membrane electrode assembly for advanced polymer electrolyte water electrolyzer
    Liu, Heming
    Kang, Xin
    Zhao, Taifeng
    Zhang, Zhiyuan
    Ge, Shiyu
    Hu, Shuqi
    Luo, Yuting
    Yang, Fengning
    Li, Shao-Hai
    Sun, Chenghua
    Yu, Qiangmin
    Cheng, Hui-Ming
    Liu, Bilu
    SCIENCE CHINA-MATERIALS, 2022, 65 (12) : 3243 - 3272
  • [4] Enhancement of thermal conductivity with Carbon-encapsulated Copper Nano-particle for nanofluids
    Pang Jinshan
    Zhang Haiye
    Li Liping
    MATERIALS AND DESIGN, PTS 1-3, 2011, 284-286 : 801 - +
  • [5] Water gradient manipulation through the polymer electrolyte membrane of an operating microfluidic water electrolyzer
    Krause, Kevin
    Crete-Laurence, Adele
    Michau, Dominique
    Clisson, Gerald
    Battaglia, Jean-Luc
    Chevalier, Stephane
    JOURNAL OF POWER SOURCES, 2024, 623
  • [6] Nickel/cobalt oxide as a highly efficient OER electrocatalyst in an alkaline polymer electrolyte water electrolyzer
    Chi, Jun
    Yu, Hongmei
    Li, Guangfu
    Fu, Li
    Jia, Jia
    Gao, Xueqiang
    Yi, Baolian
    Shao, Zhigang
    RSC ADVANCES, 2016, 6 (93): : 90397 - 90400
  • [7] Current and Temperature Distribution Measurement in a Polymer Electrolyte Membrane Water Electrolyzer Cell
    Zhou, F.
    Al Shakhshir, S.
    Kaer, S. K.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 1005 - 1012
  • [8] Application of distribution of relaxation times method in polymer electrolyte membrane water electrolyzer
    Li, Yangyang
    Jiang, Yayang
    Dang, Jian
    Deng, Xintao
    Liu, Biao
    Ma, Jugang
    Yang, Fuyuan
    Ouyang, Minggao
    Shen, Xiaojun
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [9] Identification of the electrical connection in the catalyst layer of the polymer electrolyte membrane water electrolyzer
    Kwen, Jiyun
    Doo, Gisu
    Choi, Sungyu
    Guim, Hwanuk
    Yuk, Seongmin
    Lee, Dong-Hyun
    Lee, Dong Wook
    Hyun, Jonghyun
    Kim, Hee-Tak
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (30) : 14017 - 14026
  • [10] Impact of cell design and conditioning on polymer electrolyte membrane water electrolyzer operation
    Giesbrecht, Patrick K.
    Freund, Michael S.
    International Journal of Hydrogen Energy, 2024, 95 : 806 - 817