On representations of Hecke algebras

被引:13
|
作者
Isaev, AP [1 ]
Ogievetsky, O
机构
[1] Bogoliubov Lab Theoret Phys, Joint Nucl Res Inst, Dubna 141980, Moscow Region, Russia
[2] Ctr Theoret Phys, F-13288 Marseille, France
基金
俄罗斯基础研究基金会;
关键词
representation theory; symmetric groups; Hecke algebras; Jucys-Murphy elements; maximal commutative subalgebra; Young diagram; Young graph; q-dimension;
D O I
10.1007/s10582-006-0022-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this report we review some facts about representation theory of Hecke algebras. For Hecke algebras we adapt the approach of A. Okounkov and A. Vershik [Selecta Math., New Ser., 2 (1996) 581], which was developed for the representation theory of symmetric groups. We justify explicit construction of idempotents for Hecke algebras in terms of Jucys-Murphy elements. Ocneanu's traces for these idempotents (which can be interpreted as q-dimensions of corresponding irreducible representations of quantum linear groups) are presented.
引用
收藏
页码:1433 / 1441
页数:9
相关论文
共 50 条