Thermally actuated micro-/nanoscale deformations for optical reconfigurations

被引:5
|
作者
Zhao, Yinghao [1 ,2 ]
Ji, Chang-Yin [1 ,2 ]
Yang, Hengzhang [3 ]
Wang, Yang [1 ,2 ]
Xie, Huikai [3 ]
Li, Jiafang [1 ,2 ,4 ]
机构
[1] Beijing Inst Technol, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing Key Lab Nanophoton & Ultrafine Optoelect, Minist Educ, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Integrated Circuits & Elect, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
nano-kirigami; optical reconfiguration; thermal actuation; thermal stresses; micro-; nanoscale deformations; METAMATERIAL; ABSORBER;
D O I
10.1088/2040-8986/ac5837
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The unique three-dimensional (3D) deformations caused by nano-kirigami have enabled a new degree of freedom for reconfigurable optics. Here, we demonstrate a facile nano-kirigami method that can create 3D deformed structures, which can flexibly manipulate optical properties using thermally actuated micro-/nanoscale deformations. By connecting four pairs of thermal actuators to the four sides of a gradient metasurface, large-angle beam steering (similar to 90 degrees) can be achieved by adjusting the temperature of the actuators. The amplitude of circular dichroism can be adjusted by thermally actuating micro-/nanoscale deformations. The 2D-to-3D transformation of the curved arm structure on metallic substrate results in enhanced structural absorption, inducing an almost perfect absorption at specific wavelengths. Curved asymmetric structures can also be created by thermally actuated micro-/nanoscale deformations, which provides a novel method for cross-polarized light conversion. The proposed design with thermally actuated micro-/nanoscale deformations provides a new methodology to explore versatile reconfigurable functionalities.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Solution of Thermally Developing Zone in Short Micro-/Nanoscale Channels
    Darbandi, Masoud
    Vakilipour, Shidvash
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (04): : 44501 - 1
  • [2] Micro-/nanoscale electroporation
    Chang, Lingqian
    Li, Lei
    Shi, Junfeng
    Sheng, Yan
    Lu, Wu
    Gallego-Perez, Daniel
    Lee, Ly James
    LAB ON A CHIP, 2016, 16 (21) : 4047 - 4062
  • [3] Thermally Actuated MEMS Resonant Sensors for Mass Measurement of Micro/Nanoscale Aerosol Particles
    Hajjam, Arash
    Rahafrooz, Amir
    Wilson, James C.
    Pourkamali, Siavash
    2009 IEEE SENSORS, VOLS 1-3, 2009, : 709 - +
  • [4] Method of Controlling the Micro- and Nanoscale Displacements Based on Optical Correlation
    Bugaychuk, S. A.
    Yezhov, P., V
    Tarakhan, L. M.
    Negriyko, A. M.
    Gnatovskyy, V. O.
    Sydorenko, A., V
    2019 IEEE 8TH INTERNATIONAL CONFERENCE ON ADVANCED OPTOELECTRONICS AND LASERS (CAOL), 2019, : 473 - 476
  • [5] Size effects in micro- and nanoscale indentation
    Manika, Eze
    Maniks, Janis
    ACTA MATERIALIA, 2006, 54 (08) : 2049 - 2056
  • [6] Magnetocaloric materials: From micro- to nanoscale
    Belo, Joao H.
    Pires, Ana L.
    Araujo, Joao P.
    Pereira, Andre M.
    JOURNAL OF MATERIALS RESEARCH, 2019, 34 (01) : 134 - 157
  • [7] Soft lithography for micro- and nanoscale patterning
    Dong Qin
    Younan Xia
    George M Whitesides
    Nature Protocols, 2010, 5 : 491 - 502
  • [8] Micro- and nanoscale instabilities of deformation in polymers
    V. V. Shpeizman
    P. N. Yakushev
    N. N. Peschanskaya
    Zh. V. Mukhina
    A. S. Shvedov
    V. G. Cheremisov
    A. S. Smolyanskii
    Physics of the Solid State, 2012, 54 : 1229 - 1234
  • [9] Micro- and nanoscale tensile testing of materials
    Gianola, D. S.
    Eberl, C.
    JOM, 2009, 61 (03) : 24 - 35
  • [10] Magnetocaloric materials: From micro- to nanoscale
    João H. Belo
    Ana L. Pires
    João P. Araújo
    André M. Pereira
    Journal of Materials Research, 2019, 34 : 134 - 157