Linear and Non-Linear Run Length Limited Codes

被引:2
|
作者
Lechner, Gottfried [1 ]
Land, Ingmar [1 ]
Grant, Alex [1 ]
机构
[1] Univ S Australia, Inst Telecommun Res, Mawson Lakes, SA 5095, Australia
关键词
run length limited constraint; RLL; modulation codes; trellis codes; non-linear codes;
D O I
10.1109/LCOMM.2015.2425408
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We compare achievable rates of binary linear and non-linear run length limited codes where the constraint is on the number of consecutive ones. We show that there is a significant loss in rate when linear codes are used. For non-linear codes, we present practical encoders with rates close to the theoretical limits. We show that our approach can be generalised to avoid arbitrary sequences in the data stream.
引用
收藏
页码:1085 / 1088
页数:4
相关论文
共 50 条
  • [1] On non-linear codes correcting errors of limited size
    Battaglioni, Massimo
    Chiaraluce, Franco
    Klove, Torleiv
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [2] Mildly non-linear codes
    Parks, A
    CODES, SYSTEMS, AND GRAPHICAL MODELS, 2001, 123 : 135 - 151
  • [3] Turbo codes with non-linear constituent codes
    Takeshita, OY
    Sun, J
    Fitz, MP
    WCNC: 2000 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, VOLS 1-3, 2000, : 144 - 146
  • [4] Non-linear codes for belief propagation
    Byrne, E
    Kelley, C
    Monico, C
    Rosenthal, J
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 43 - 43
  • [5] ALGEBRAIC TECHNIQUES FOR NON-LINEAR CODES
    BAUER, H
    GANTER, B
    HERGERT, F
    COMBINATORICA, 1983, 3 (01) : 21 - 33
  • [6] RUN-LENGTH LIMITED CODES
    TANG, DT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (01) : 128 - +
  • [7] Non-linear maximum rank distance codes
    Antonio Cossidente
    Giuseppe Marino
    Francesco Pavese
    Designs, Codes and Cryptography, 2016, 79 : 597 - 609
  • [8] On the locality of codeword symbols in non-linear codes
    Forbes, Michael
    Yekhanin, Sergey
    DISCRETE MATHEMATICS, 2014, 324 : 78 - 84
  • [9] Non-linear maximum rank distance codes
    Cossidente, Antonio
    Marino, Giuseppe
    Pavese, Francesco
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 79 (03) : 597 - 609
  • [10] A Simple Family of Non-Linear Analog Codes
    Burich, Mariano Eduardo
    Garcia-Frias, Javier
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (11) : 2889 - 2893