Twisted Dirac operators over quantum spheres

被引:3
|
作者
Sitarz, Andrzej [1 ]
机构
[1] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
关键词
D O I
10.1063/1.2842067
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct new families of spectral triples over quantum spheres, with a particular attention focused on the standard Podles quantum sphere and twisted Dirac operators. (C) 2008 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] DIRAC OPERATORS ON QUANTUM-2 SPHERES
    OHTA, K
    SUZUKI, H
    MODERN PHYSICS LETTERS A, 1994, 9 (25) : 2325 - 2333
  • [2] Dirac operators on all Podles quantum spheres
    Dabrowski, Ludwik
    D'Andrea, Francesco
    Landi, Giovanni
    Wagner, Elmar
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2007, 1 (02) : 213 - 239
  • [3] Twisted configurations over quantum Euclidean spheres
    Landi, G
    Madore, J
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 45 (1-2) : 151 - 163
  • [4] Twisted Reality Condition for Dirac Operators
    Brzezinski, Tomasz
    Ciccoli, Nicola
    Dabrowski, Ludwik
    Sitarz, Andrzej
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2016, 19 (03)
  • [5] Twisted Dirac operators and generalized gradients
    Homma, Yasushi
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 50 (02) : 101 - 127
  • [6] Harmonic spinors for twisted Dirac operators
    Bar, C
    MATHEMATISCHE ANNALEN, 1997, 309 (02) : 225 - 246
  • [7] Twisted Reality Condition for Dirac Operators
    Tomasz Brzeziński
    Nicola Ciccoli
    Ludwik Dąbrowski
    Andrzej Sitarz
    Mathematical Physics, Analysis and Geometry, 2016, 19
  • [8] Harmonic spinors for twisted Dirac operators
    Christian Bär
    Mathematische Annalen, 1997, 309 : 225 - 246
  • [9] Twisted Higher Spin Dirac Operators
    H. De Schepper
    D. Eelbode
    T. Raeymaekers
    Complex Analysis and Operator Theory, 2014, 8 : 429 - 447
  • [10] Twisted Dirac operators and generalized gradients
    Yasushi Homma
    Annals of Global Analysis and Geometry, 2016, 50 : 101 - 127