Learning to Distill Convolutional Features into Compact Local Descriptors

被引:6
|
作者
Lee, Jongmin [1 ,2 ]
Jeong, Yoonwoo [1 ]
Kim, Seungwook [1 ]
Min, Juhong [1 ,2 ]
Cho, Minsu [1 ,2 ]
机构
[1] POSTECH, Pohang, South Korea
[2] NPRC, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/WACV48630.2021.00094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extracting local descriptors or features is an essential step in solving image matching problems. Recent methods in the literature mainly focus on extracting effective descriptors, without much attention to the size of the descriptors. In this work, we study how to learn a compact yet effective local descriptor. The proposed method distills multiple intermediate features of a pretrained convolutional neural network to encode different levels of visual information from local textures to non-local semantics, resulting in local descriptors with a designated dimension. Experiments on standard benchmarks for semantic correspondence show that it achieves significantly improved pedbrmance over existing models, with up to a 100 times smaller size of descriptors. Furthermore, while trained on a small-sized dataset for semantic correspondence, the proposed method also generalizes well to other image matching tasks, pedbrming comparable result to the state of the art on wide-baseline matching and visual localization benchmarks.
引用
收藏
页码:897 / 907
页数:11
相关论文
共 50 条
  • [1] A Convolutional Neural Network for Learning Local Feature Descriptors on Multispectral Images
    Nunes, Cristiano F. G.
    Padua, Flavin L. C.
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (02) : 215 - 222
  • [2] Learning Visual Object Categories with Global Descriptors and Local Features
    Pereira, Rui
    Lopes, Luis Seabra
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5816 : 225 - 236
  • [3] Learning Local Shape Descriptors from Part Correspondences with Multiview Convolutional Networks
    Huang, Haibin
    Kalogerakis, Evangelos
    Chaudhuri, Siddhartha
    Ceylan, Duygu
    Kim, Vladimir G.
    Yumer, Ersin
    ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (01):
  • [4] Orthogonal Local Image Descriptors with Convolutional Autoencoders
    Roman-Rangel, Edgar
    Marchand-Maillet, Stephane
    PATTERN RECOGNITION (MCPR 2020), 2020, 12088 : 149 - 158
  • [5] Local convolutional features and metric learning for SAR image registration
    Qiangliang Guo
    Jin Xiao
    Xiaoguang Hu
    Baochang Zhang
    Cluster Computing, 2019, 22 : 3103 - 3114
  • [6] Local convolutional features and metric learning for SAR image registration
    Guo, Qiangliang
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Baochang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (02): : S3103 - S3114
  • [7] Aggregating Local Image Descriptors into Compact Codes
    Jegou, Herve
    Perronnin, Florent
    Douze, Matthijs
    Sanchez, Jorge
    Perez, Patrick
    Schmid, Cordelia
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) : 1704 - 1716
  • [8] Aggregating local descriptors into a compact image representation
    Jegou, Herve
    Douze, Matthijs
    Schmid, Cordelia
    Perez, Patrick
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3304 - 3311
  • [9] Learning-Based Dimensionality Reduction for Computing Compact and Effective Local Feature Descriptors
    Dong, Hao
    Chen, Xieyuanli
    Dusmanu, Mihai
    Larsson, Viktor
    Pollefeys, Marc
    Stachniss, Cyrill
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6189 - 6195
  • [10] Learning local image descriptors
    Winder, Simon A. J.
    Brown, Matthew
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 17 - +