Clustering of linear combinations of multiplicative functions

被引:1
|
作者
Lebowitz-Lockard, Noah [1 ]
Pollack, Paul [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Concentration; Multiplicative function; Distribution function; Probabilistic number theory; CONTINUITY; NUMBER;
D O I
10.1016/j.jnt.2017.05.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A real-valued arithmetic function F is said to cluster about the point u is an element of R if the upper density of n with u - delta < F(n) < u is bounded away from 0, uniformly for all delta > 0. We establish a simple-to-check sufficient condition for a linear combination of multiplicative functions to be nonclustering, meaning not clustering anywhere. This provides a means of generating new families of arithmetic functions possessing continuous distribution functions. As a specific application, we resolve a problem posed recently by Luca and Pomerance. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:660 / 672
页数:13
相关论文
共 50 条
  • [1] Linear correlations of multiplicative functions
    Matthiesen, Lilian
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 121 (02) : 372 - 425
  • [2] Almost multiplicative functions and almost linear multiplicative functionals
    Šemrl P.
    Aequationes mathematicae, 2002, 63 (1-2) : 180 - 192
  • [3] LINEAR COMBINATIONS OF CONTINUOUS FUNCTIONS
    SCHOENBERG, IJ
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (04): : 384 - &
  • [4] Identifying linear combinations of ridge functions
    Buhmann, MD
    Pinkus, A
    ADVANCES IN APPLIED MATHEMATICS, 1999, 22 (01) : 103 - 118
  • [5] ON LINEAR COMBINATIONS OF CERTAIN ANALYTIC FUNCTIONS
    Noor, K. I.
    Malik, B.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 1 (01): : 35 - 40
  • [6] EXCEPTIONAL LINEAR COMBINATIONS OF ENTIRE FUNCTIONS
    KATO, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (09): : 700 - 704
  • [7] LINEAR COMBINATIONS OF FUNCTIONS WITH A SINGLE ZERO
    JODEIT, M
    DRISCOLL, RJ
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (05): : 560 - &
  • [8] Uniqueness of linear combinations of ridge functions
    Long, Jinling
    Wu, Wei
    Nan, Dong
    Wang, Junfang
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2007, : 85 - +
  • [9] On linear combinations of binomial OWA functions
    Bortot, Silvia
    Pereira, Ricardo Alberto Marques
    FUZZY SETS AND SYSTEMS, 2024, 488
  • [10] ON NONLINEAR FUNCTIONS OF LINEAR-COMBINATIONS
    DIACONIS, P
    SHAHSHAHANI, M
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (01): : 175 - 191