STABILITY RESULTS FOR THE ROBIN-LAPLACIAN ON NONSMOOTH DOMAINS

被引:1
|
作者
Bucur, Dorin [1 ]
Giacomini, Alessandro [2 ]
Trebeschi, Paola [2 ]
机构
[1] Univ Savoie Mt Blanc, LAMA, CNRS, Campus Sci, F-73376 Le Bourget Du Lac, France
[2] Univ Brescia, Sez Matemat, DICATAM, I-25123 Brescia, Italy
关键词
Robin-Laplacian; rectifiable sets; functions of bounded variation; lower semicontinuity; Hausdorff convergence; BOUNDARY-CONDITIONS; ELLIPTIC PROBLEMS;
D O I
10.1137/22M1471250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate a generalization of the Laplace equation under Robin boundary conditions on a large class of possibly nonsmooth domains by dealing with the trace term appearing in the variational formulation from the point of view of the theory of functions of bounded variation. Admissible domains may have inner boundaries, i.e., inner cracks. In dimension two, we formulate a stability result for the elliptic problems under domain variation: with this aim, we introduce a notion of perimeter (Robin perimeter) which is tailored to count the inner boundaries with the appropriate natural multiplicity.
引用
收藏
页码:4591 / 4624
页数:34
相关论文
共 50 条
  • [1] The Robin-Laplacian problem on varying domains
    Bucur, Dorin
    Giacomini, Alessandro
    Trebeschi, Paola
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (06)
  • [2] Minimization of the k-th eigenvalue of the Robin-Laplacian
    Bucur, Dorin
    Giacomini, Alessandro
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (03) : 643 - 687
  • [3] Faber–Krahn Inequalities for the Robin-Laplacian: A Free Discontinuity Approach
    Dorin Bucur
    Alessandro Giacomini
    Archive for Rational Mechanics and Analysis, 2015, 218 : 757 - 824
  • [4] Faber-Krahn Inequalities for the Robin-Laplacian: A Free Discontinuity Approach
    Bucur, Dorin
    Giacomini, Alessandro
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (02) : 757 - 824
  • [5] Minimization of the k-th eigenvalue of the Robin-Laplacian with perimeter constraint
    Cito, Simone
    Giacomini, Alessandro
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (09)
  • [6] A Sharp estimate for the first Robin-Laplacian eigenvalue with negative boundary parameter
    Bucur D.
    Ferone V.
    Nitsch C.
    Trombetti C.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2019, 30 (04): : 665 - 676
  • [7] The Robin–Laplacian problem on varying domains
    Dorin Bucur
    Alessandro Giacomini
    Paola Trebeschi
    Calculus of Variations and Partial Differential Equations, 2016, 55
  • [8] Spectral stability of the Robin Laplacian
    V. I. Burenkov
    M. Lanza de Cristoforis
    Proceedings of the Steklov Institute of Mathematics, 2008, 260 : 68 - 89
  • [9] Spectral Stability of the Robin Laplacian
    Burenkov, V. I.
    Lanza de Cristoforis, M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 260 (01) : 68 - 89
  • [10] Generalized nonlocal Robin Laplacian on arbitrary domains
    Nouhayla Ait Oussaid
    Khalid Akhlil
    Sultana Ben Aadi
    Mourad El Ouali
    Archiv der Mathematik, 2021, 117 : 675 - 686