Bias-reduced estimators for bivariate tail modelling

被引:13
|
作者
Beirlant, J. [3 ]
Dierckx, G. [3 ,4 ]
Guillou, A. [1 ,2 ]
机构
[1] Univ Strasbourg, F-67084 Strasbourg, France
[2] CNRS, IRMA UMR 7501, F-67084 Strasbourg, France
[3] Katholieke Univ Leuven, Dept Math, Leuven Stat Res Ctr, Louvain, Belgium
[4] Hogesch Univ Brussel, Dept Math & Stat, Brussels, Belgium
来源
INSURANCE MATHEMATICS & ECONOMICS | 2011年 / 49卷 / 01期
关键词
Extreme value theory; Bivariate slowly varying function; Bias reduction; DISTRIBUTIONS;
D O I
10.1016/j.insmatheco.2011.01.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
Ledford and Tawn (1997) introduced a flexible bivariate tail model based on the coefficient of tail dependence and on the dependence of the extreme values of the random variables. In this paper, we extend the concept by specifying the slowly varying part of the model as done by Hall (1982) with the univariate case. Based on Beirlant et al. (2009), we propose a bias-reduced estimator for the coefficient of tail dependence and for the estimation of small tail probabilities. We discuss the properties of these estimators via simulations and a real-life example. Furthermore, we discuss some theoretical asymptotic aspects of this approach. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 50 条
  • [1] Bias-reduced estimators of the Weibull tail-coefficient
    Diebolt, Jean
    Gardes, Laurent
    Girard, Stephane
    Guillou, Armelle
    TEST, 2008, 17 (02) : 311 - 331
  • [2] Bias-reduced estimators of the Weibull tail-coefficient
    Jean Diebolt
    Laurent Gardes
    Stéphane Girard
    Armelle Guillou
    TEST, 2008, 17 : 311 - 331
  • [3] Bias-reduced extreme quantile estimators of Weibull tail-distributions
    Diebolt, Jean
    Gardes, Laurent
    Girard, Stephane
    Guillou, Armelle
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (05) : 1389 - 1401
  • [4] Limiting bias-reduced Amoroso kernel density estimators for non-negative data
    Igarashi, Gaku
    Kakizawa, Yoshihide
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (20) : 4905 - 4937
  • [5] Composite bias-reduced Lp-quantile-based estimators of extreme quantiles and expectiles
    Stupfler, Gilles
    Usseglio-Carleve, Antoine
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (02): : 704 - 742
  • [6] Improved reduced-bias tail index and quantile estimators
    Beirlant, Jan
    Figueiredo, Femanda
    Gomes, M. Ivette
    Vandewalle, Bjoern
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (06) : 1851 - 1870
  • [7] Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies
    Zhong, Hua
    Prentice, Ross L.
    BIOSTATISTICS, 2008, 9 (04) : 621 - 634
  • [8] Bias-Reduced Doubly Robust Estimation
    Vermeulen, Karel
    Vansteelandt, Stijn
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (511) : 1024 - 1036
  • [9] Stochastic Bias-Reduced Gradient Methods
    Asi, Hilal
    Carmon, Yair
    Jambulapati, Arun
    Jin, Yujia
    Sidford, Aaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [10] Bias-reduced estimators of conditional odds ratios in matched case-control studies with unmatched confounding
    Blagus, Rok
    BIOMETRICAL JOURNAL, 2023, 65 (04)