RECONSTRUCTION OF PRIVACY-SENSITIVE DATA FROM PROTECTED TEMPLATES

被引:0
|
作者
Rezaeifar, Shideh [1 ]
Razeghi, Behrooz [1 ]
Taran, Olga [1 ]
Holotyak, Taras [1 ]
Voloshynovskiy, Slava [1 ]
机构
[1] Univ Geneva, Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
Privacy; template protection; reconstruction; ambiguization; deep learning;
D O I
10.1109/icip.2019.8803734
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, we address the problem of data reconstruction from privacy-protected templates, based on recent concept of sparse ternary coding with ambiguization (STCA). The STCA is a generalization of randomization techniques which includes random projections, lossy quantization, and addition of ambiguization noise to satisfy the privacy-utility trade-off requirements. The theoretical privacy-preserving properties of STCA have been validated on synthetic data. However, the applicability of STCA to real data and potential threats linked to reconstruction based on recent deep reconstruction algorithms are still open problems. Our results demonstrate that STCA still achieves the claimed theoretical performance when facing deep reconstruction attacks for the synthetic i.i.d. data, while for real images special measures are required to guarantee proper protection of the templates.
引用
收藏
页码:1163 / 1167
页数:5
相关论文
共 50 条
  • [1] Privacy-Sensitive Data in Connected Cars
    Nawrath, T.
    Fischer, D.
    Markscheffel, B.
    2016 11TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2016, : 392 - 393
  • [2] Privacy-Sensitive Congestion Charging
    Beresford, Alastair R.
    Davies, Jonathan J.
    Harle, Robert K.
    SECURITY PROTOCOLS, 2009, 5087 : 97 - 104
  • [3] From web search to healthcare utilization: privacy-sensitive studies from mobile data
    White, Ryen
    Horvitz, Eric
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (01) : 61 - 68
  • [4] Privacy-sensitive data filtering algorithm based on fuzzy approximation
    Fang C.-J.
    Hu X.-R.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (04): : 1174 - 1180
  • [5] Towards Privacy-Sensitive Participatory Sensing
    Huang, Kuan Lun
    Kanhere, Salil S.
    Hu, Wen
    2009 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), VOLS 1 AND 2, 2009, : 637 - +
  • [6] A privacy-sensitive data identification model in online social networks
    Yi, Yuzi
    Zhu, Nafei
    He, Jingsha
    Jurcut, Anca Delia
    Ma, Xiangjun
    Luo, Yehong
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (01):
  • [7] Accurate filtering of privacy-sensitive information in raw genomic data
    Decouchant, Jeremie
    Fernandes, Maria
    Volp, Marcus
    Couto, Francisco M.
    Esteves-Verissimo, Paulo
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 82 : 1 - 12
  • [8] Compressed and Privacy-Sensitive Sparse Regression
    Zhou, Shuheng
    Lafferty, John
    Wasserman, Larry
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (02) : 846 - 866
  • [9] A privacy-sensitive approach to distributed clustering
    Merugu, S
    Ghosh, J
    PATTERN RECOGNITION LETTERS, 2005, 26 (04) : 399 - 410
  • [10] Privacy-Sensitive Robotics [Workshop Summary]
    Rueben, Matthew
    Smart, William D.
    Grimm, Cindy M.
    Cakmak, Maya
    COMPANION OF THE 2017 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI'17), 2017, : 425 - 426