Subharmonic Solutions of Planar Hamiltonian Systems: a Rotation Number Approach

被引:0
|
作者
Boscaggin, Alberto [1 ]
机构
[1] SISSA ISAS, Int Sch Adv Studies, I-34136 Trieste, Italy
关键词
Subharmonic solutions; Poincare-Birkhoff theorem; Rotation number; POINCARE-BIRKHOFF THEOREM; 2ND-ORDER DIFFERENTIAL-EQUATIONS; ASYMMETRIC NONLINEARITIES; PERIODIC-SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of infinitely many subharmonic solutions, with prescribed nodal properties, for a planar Hamiltonian system Jz' = del(z)H(t, z), with H periodic in the first variable. The goal is achieved by performing estimates of the rotation numbers with respect to deformed polar coordinates and applying Ding's version of the Poincare-Birkhoff fixed point theorem.
引用
收藏
页码:77 / 103
页数:27
相关论文
共 50 条