Partial electronic conductivity and electrolytic domain of La0.9Sr0.1Ga0.8Mg0.2O3-δ

被引:99
|
作者
Kim, JH [1 ]
Yoo, HI [1 ]
机构
[1] Seoul Natl Univ, Sch Mat Sci & Engn, Solid State Ion Res Lab, Seoul 151742, South Korea
关键词
LSGM; partial electronic conductivity; electrolytic domain; ion-blocking polarization technique;
D O I
10.1016/S0167-2738(01)00687-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The partial electronic conductivity of La0.9Sr0.1Ga0.8Mg0.2O3-delta has been measured as a function of temperature (T) and oxygen activity (a(O2)) in the ranges of 1073 less than or equal to T/K less than or equal to 1273 and 10(-1.5) less than or equal to a(O2) less than or equal to 10(-34.6), respectively, by using an ion-blocking, polarization technique. The p- and n-type conductivities may best be estimated as sigma (p)/S cm(-1) = (98 +/- 14)exp(- 1.12 +/- 0.12 eV/kT)(a(O2)(1/4)), sigma (n)/S cm(-1) = (1.8 +/- 0.2) X 10(8)exp(- 4.14 +/- 0.10 eV/kT)(a(O2)(-1/4)). Upon comparison with the literature, the p-type conductivity of LaGaO3-based oxides seems to increase as the amount of Sr with its activation energy little influenced. From the ionic and partial electronic conductivities, the electrolytic domain boundaries of La0.9Sr0.1Ga0.8Mg0.2O3-delta have been located: the lower boundary, e.g. at 1000 degreesC is 10(-23) atm of oxygen partial pressure. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 50 条
  • [1] Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α
    Ma, Guilin
    Zhang, Feng
    Zhu, Jianli
    Meng, Guangyao
    CHEMISTRY OF MATERIALS, 2006, 18 (25) : 6006 - 6011
  • [2] Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte SOFCs
    Guo, Weimin
    Liu, Jiang
    Jin, Chao
    Gao, Hongbo
    Zhang, Yaohui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 473 (1-2) : 43 - 47
  • [3] Determination of the Crystal Structure of La0.9Sr0.1Ga0.8Mg0.2O3-δ
    Zhang, Jie
    Li, Chenggang
    Chen, Weiguang
    PROCEEDINGS OF THE 2017 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT (ICEESD 2017), 2017, 129 : 1076 - 1079
  • [4] Ionic Conductivity of Chemically Synthesized La0.9Sr0.1Ga0.8Mg0.2O3-δ Solid Electrolyte
    Reis, S. L.
    Muccillo, E. N. S.
    ELECTROCERAMICS VI, 2014, 975 : 81 - 85
  • [5] Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-α by citrate method
    Zheng, WJ
    Wu, LY
    Peng, DK
    Meng, GY
    JOURNAL OF INORGANIC MATERIALS, 2001, 16 (02) : 358 - 362
  • [6] Influence of A-site deficiencies in the system La0.9Sr0.1Ga0.8Mg0.2O3-δ on structure and electrical conductivity
    Runge, H
    Guth, U
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2004, 8 (04) : 272 - 276
  • [7] Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α ceramics prepared by microemulsion method
    Zhu Jian-Li
    Zhang Feng
    Chen Cheng
    Ma Gui-Lin
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007, 23 (09) : 1621 - 1626
  • [8] Preparation of dense La0.9Sr0.1Ga0.8Mg0.2O3-δ with high ionic conductivity by solid-state synthesis
    Reis, S. L.
    Muccillo, E. N. S.
    IONICS, 2018, 24 (06) : 1693 - 1700
  • [9] Preparation of dense La0.9Sr0.1Ga0.8Mg0.2O3-δ with high ionic conductivity by solid-state synthesis
    S. L. Reis
    E. N. S. Muccillo
    Ionics, 2018, 24 : 1693 - 1700
  • [10] Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ Powder by a Two-Step Doping Method
    Zhong Haitao
    Ai Desheng
    Tan Wei
    Lin Xuping
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 : 704 - 707