Semi-classical phase equivalent deep and shallow potentials

被引:3
|
作者
Horiuchi, H. [1 ,4 ]
Brink, D. M. [2 ]
Islam, M. [3 ]
机构
[1] Osaka Univ, Nucl Phys Res Ctr, Ibaraki 5670047, Japan
[2] Univ Oxford, Dept Phys, Oxford OX1 3NP, England
[3] Atom Energy Res Estab, Inst Comp Sci, Dhaka, Bangladesh
[4] Int Inst Adv Studies, Kizugawa 6190225, Japan
关键词
D O I
10.1088/0954-3899/35/8/085103
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Semi-classical expressions for scattering phase shifts which change in a continuous way from very low energies below the Coulomb barrier to high energies above the barrier are obtained. They satisfy a generalized form of Levinson's theorem. These results lead to a semi-classical method for finding a shallow potential which is phase equivalent to a deep potential. The method has been applied to two examples of alpha-nucleus scattering.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Exchange potentials for semi-classical electrons
    Herzfeld, Judith
    Ekesan, Solen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (44) : 30748 - 30753
  • [2] A SEMI-CLASSICAL TREATMENT OF NONLOCAL POTENTIALS
    HORIUCHI, H
    PROGRESS OF THEORETICAL PHYSICS, 1980, 64 (01): : 184 - 203
  • [3] SEMI-CLASSICAL PHASE-SHIFTS FOR POTENTIALS CONTAINING A HARD-CORE
    KORSCH, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (03): : 1311 - 1312
  • [4] SEMI-CLASSICAL STUDY OF OPTICAL POTENTIALS - POTENTIAL RESONANCES
    LEE, SY
    TAKIGAWA, N
    MARTY, C
    NUCLEAR PHYSICS A, 1978, 308 (1-2) : 161 - 188
  • [5] Geometric potentials in quantum optics: A semi-classical interpretation
    Cheneau, M.
    Rath, S. P.
    Yefsah, T.
    Guenter, K. J.
    Juzeliunas, G.
    Dalibard, J.
    EPL, 2008, 83 (06)
  • [6] FOCAL POINTS AND PHASE OF SEMI-CLASSICAL PROPAGATOR
    LEVIT, S
    MOHRING, K
    SMILANSKY, U
    DREYFUS, T
    ANNALS OF PHYSICS, 1978, 114 (1-2) : 223 - 242
  • [7] SEMI-CLASSICAL APPROXIMATION OF THE SCATTERING PHASE FOR A POTENTIAL
    ROBERT, D
    TAMURA, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (03): : 89 - 92
  • [8] Semi-classical states for fractional Choquard equations with decaying potentials
    Deng, Yinbin
    Peng, Shuangjie
    Yang, Xian
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024,
  • [9] BROWNIAN MOTION CAPACITORY POTENTIALS AND SEMI-CLASSICAL SETS .3
    CIESIELSKI, Z
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1965, 13 (03): : 215 - +
  • [10] SEMI-CLASSICAL THEORY OF PREDISSOCIATION - UNIFORM SEMI-CLASSICAL WAVEFUNCTION APPROACH
    EU, BC
    ZARITSKY, N
    JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (04): : 1553 - 1568