A Fast Foreground Object Detection Algorithm Using Kernel Density Estimation

被引:0
|
作者
Li, Dawei [1 ]
Xu, Lihong [1 ]
Goodman, Erik [2 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 200092, Peoples R China
[2] Michigan State Univ, Beacon Ctr, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
foreground detection; kernel density estimation; markov random field; noise reduction; simulated annealing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
a real-time foreground moving object detection algorithm based on Kernel Density Estimation in srgb color space is proposed in this paper, followed by an iterative noise reduction procedure, which removes dispersed noise and enhances the foreground contour in a binary image mask within a Bayesian framework. A simulated annealing strategy is applied in MRF-type decision making at the texture level to accelerate the convergence of the iterative noise reduction procedure. Experiments show that the proposed algorithm can resist undesirable effects of changing environmental illumination and shadow. Compared to several classical methods, better detection results are achieved on various datasets including both indoor and outdoor cases.
引用
收藏
页码:703 / +
页数:2
相关论文
共 50 条
  • [1] An Improved Background and Foreground Modeling Using Kernel Density Estimation in Moving Object Detection
    Yang, Yun
    Liu, Yunyi
    2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 1050 - 1054
  • [2] Precise Foreground Detection Algorithm Using Motion Estimation, Minima and Maxima Inside the Foreground Object
    Nawaz, Muhammad
    Cosmas, John
    Lazaridis, Pavlos I.
    Zaharis, Zaharias D.
    Zhang, Yue
    Mohib, Hamdullah
    IEEE TRANSACTIONS ON BROADCASTING, 2013, 59 (04) : 725 - 731
  • [3] Moving object detection in airborne video using kernel density estimation
    Jin, Ting
    Zhou, Fugen
    Bai, Xiangzhi
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2011, 40 (01): : 153 - 158
  • [4] Moving object detection method using background Gaussian kernel density estimation
    Wang, Jin-Song
    Yan, Yi-An
    Wei, Fa-Jie
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2009, 38 (02): : 373 - 376
  • [5] Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation
    Tavakoli, Hamed Rezazadegan
    Rahtu, Esa
    Heikkila, Janne
    IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 666 - 675
  • [6] Fast On-Line Kernel Density Estimation for Active Object Localization
    Rhodes, Anthony D.
    Quinn, Max H.
    Mitchell, Melanie
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 454 - 462
  • [7] Background and foreground modeling using nonparametric kernel density estimation for visual surveillance
    Elgammal, A
    Duraiswami, R
    Harwood, D
    Davis, LS
    PROCEEDINGS OF THE IEEE, 2002, 90 (07) : 1151 - 1163
  • [8] Modified Fast Algorithm for the Bandwidth Selection of the Kernel Density Estimation
    A. V. Lapko
    V. A. Lapko
    Optoelectronics, Instrumentation and Data Processing, 2020, 56 : 566 - 572
  • [9] Modified Fast Algorithm for the Bandwidth Selection of the Kernel Density Estimation
    Lapko, A., V
    Lapko, V. A.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2020, 56 (06) : 566 - 572
  • [10] A Parabolic Detection Algorithm Based on Kernel Density Estimation
    Liu, Xiaomin
    Song, Qi
    Li, Peihua
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PROCEEDINGS, 2009, 5754 : 405 - 412