Thermal unfolding of homodimers and heterodimers of different skeletal-muscle isoforms of tropomyosin

被引:17
|
作者
Matyushenko, Alexander M. [1 ,2 ]
Kleymenov, Sergey Y. [1 ,3 ]
Susorov, Denis S. [1 ]
Levitsky, Dmitrii I. [1 ,4 ]
机构
[1] Russian Acad Sci, Bach Inst Biochem, Res Ctr Biotechnol, Leninsky Prosp 33, Moscow 119071, Russia
[2] Russian Acad Sci, Inst Immunol & Physiol, Ekaterinburg 620049, Russia
[3] Russian Acad Sci, Koltzov Inst Dev Biol, Moscow 119334, Russia
[4] Moscow MV Lomonosov State Univ, Belozersky Inst Physicochem Biol, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Tropomyosin; Isoforms; Homodimers and heterodimers; Thermal unfolding; Differential scanning calorimetry; INTERCHAIN DISULFIDE BOND; ALPHA-TROPOMYOSIN; SMOOTH-MUSCLE; STABILITY; ACTIN; CARDIOMYOPATHY; FLUORESCENCE; EXPRESSION; MUTATIONS; RESIDUES;
D O I
10.1016/j.bpc.2018.09.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We applied differential scanning calorimetry (DSC) to investigate the structural properties of three isoforms of tropomyosin (Tpm), alpha, beta, and gamma, expressed from different genes in human skeletal muscles. We compared specific features of the thermal unfolding of alpha alpha, beta beta, and gamma gamma Tpm homodimers, as well as of alpha beta and gamma beta Tpm heterodimers. The results show that the thermal stability of gamma gamma homodimer is much higher than that of alpha alpha homodimer which, in turn, is much more thermostable than the beta beta homodimer. The stability of the gamma beta Tpm heterodimer is much lower than that of the gamma gamma homodimer, and its thermal unfolding is quite different from that for gamma gamma and beta beta homodimers, whereas the unfolding of the alpha beta heterodimer is roughly similar to that of the alpha alpha homodimer.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Functional homodimers and heterodimers of recombinant smooth muscle tropomyosin
    Coulton, Arthur
    Lehrer, Sherwin S.
    Geeves, Michael A.
    BIOCHEMISTRY, 2006, 45 (42) : 12853 - 12858
  • [2] Thermal unfolding of smooth muscle and nonmuscle tropomyosin α-homodimers with alternatively spliced exons
    Kremneva, E
    Nikolaeva, O
    Maytum, R
    Arutyunyan, AM
    Kleimenov, SY
    Geeves, MA
    Levitsky, DI
    FEBS JOURNAL, 2006, 273 (03) : 588 - 600
  • [3] Thermal unfolding of various human non-muscle isoforms of tropomyosin
    Nefedova, Victoria V.
    Marchenko, Marina A.
    Kleymenov, Sergey Y.
    Datskevich, Petr N.
    Levitsky, Dmitrii I.
    Matyushenko, Alexander M.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 514 (03) : 613 - 617
  • [4] In Vitro Formation and Characterization of the Skeletal Muscle α•β Tropomyosin Heterodimers
    Kalyva, Athanasia
    Schmidtmann, Anja
    Geeves, Michael A.
    BIOCHEMISTRY, 2012, 51 (32) : 6388 - 6399
  • [5] β-Tropomyosin mutations alter tropomyosin isoforms expression in skeletal muscle
    Nilsson, J.
    Oldfors, A.
    Tajsharghi, H.
    NEUROMUSCULAR DISORDERS, 2007, 17 (9-10) : 839 - 839
  • [6] ELECTROPHORETIC FORMS OF TROPOMYOSIN IN SKELETAL-MUSCLE
    PERRIE, WT
    BUMFORD, SJ
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1987, 15 (06) : 1070 - 1071
  • [7] TROPOMYOSIN HETEROGENEITY IN HUMAN SKELETAL-MUSCLE
    GIOMETTI, CS
    DANON, MJ
    ANNALS OF NEUROLOGY, 1984, 16 (01) : 144 - 145
  • [8] HETEROGENEITY OF HUMAN SKELETAL-MUSCLE TROPOMYOSIN
    GIOMETTI, CS
    DANON, MJ
    ANNALS OF NEUROLOGY, 1985, 18 (02) : 234 - 243
  • [9] Human skeletal muscle-specific α-actinin-2 and -3 isoforms form homodimers and heterodimers in vitro and in vivo
    Chan, YM
    Tong, HQ
    Beggs, AH
    Kunkel, LM
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 248 (01) : 134 - 139
  • [10] TROPOMYOSIN TRANSITIONS IN SKELETAL-MUSCLE ACTIN-TROPONIN-TROPOMYOSIN
    RESETAR, AM
    CHALOVICH, JM
    BIOPHYSICAL JOURNAL, 1994, 66 (02) : A308 - A308