On-line algorithms for complex number arithmetic

被引:0
|
作者
McIlhenny, R [1 ]
Ercegovac, MD [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
来源
CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2 | 1998年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A class of on-line algorithms for complex number arithmetic is presented. These algorithms adopt a redundant complex number system (RCNS) to represent complex numbers as a single number Such a scheme simplifies the specification of the design, and has the additional effect that single-precision complex arithmetic can be easily reconfigured for double-precision real arithmetic. We present cost x delay comparisons with the more conventional approach to show a significant improvement, demonstrating that the presented algorithms are attractive for VLSI systems demanding complex number operations.
引用
收藏
页码:172 / 176
页数:5
相关论文
共 50 条
  • [1] Optimal parameters for on-line arithmetic
    Walter, CD
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1995, 56 (1-2) : 11 - 18
  • [2] FPGA based on-line complex-number multipliers
    Pérez-Pascual, A
    Sansaloni, T
    Valls, T
    ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 1481 - 1484
  • [3] Optimal on-line algorithms for walking with minimum number of turns in unknown streets
    Computer Science Group, Tata Inst. of Fundamental Research, Bombay 400005, India
    Comput Geom Theory Appl, 5 (241-266):
  • [4] Optimal on-line algorithms for walking with minimum number of turns in unknown streets
    Ghosh, SK
    Saluja, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (05): : 241 - 266
  • [5] On-line algorithms for multiplication and division in real and complex numeration systems
    Frougny, Christiane
    Pavelka, Marta
    Pelantoya, Edita
    Syobodoya, Milena
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [6] On-line algorithms for orders
    Bouchitte, V
    Rampon, JX
    THEORETICAL COMPUTER SCIENCE, 1997, 175 (02) : 225 - 238
  • [7] Motion estimation using on-line arithmetic
    Su, CL
    Jen, CW
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 683 - 686
  • [8] On-line ranking algorithms for trees
    Lee, CW
    Juan, JST
    FCS '05: Proceedings of the 2005 International Conference on Foundations of Computer Science, 2005, : 46 - 51
  • [9] Approximation and on-line algorithms - Preface
    Leonardi, S
    ALGORITHMICA, 2004, 40 (04) : 217 - 217
  • [10] Algorithms for the on-line travelling salesman
    Ausiello, G
    Feuerstein, E
    Leonardi, S
    Stougie, L
    Talamo, M
    ALGORITHMICA, 2001, 29 (04) : 560 - 581