Fourth-rank tensors of [[V2]2]-type and elastic material constants for 2D crystals

被引:10
|
作者
Jasiukiewicz, Cz. [1 ]
Paszkiewicz, T. [1 ]
Wolski, S. [1 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, PL-35959 Rzeszow, Poland
来源
关键词
D O I
10.1002/pssb.200777712
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Fourth-rank symmetric tensors, that embody the elastic properties of crystalline anisotropic substances, were constructed for all 2D crystal systems. Using them we obtained explicit expressions for inverse of Young's modulus E(n), inverse of shear modulus G(m,n) and Poisson's ratio v(m, n), which depend on components of the elastic compliances tensor S, on direction cosines of vectors n of uniaxial load and the vector m of lateral strain with crystalline symmetry axes. All 2D crystal systems are considered. Such representation yields decomposition of the above elastic characteristics to isotropic and anisotropic parts. Expressions for Poisson's coefficient are well suited for studying the property of auxeticity and anisotropy of 2D crystals. Christoffel's tensor is calculated for all 2D crystal classes. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:557 / 561
页数:5
相关论文
共 50 条
  • [1] On the symmetries of 2D elastic and hyperelastic tensors
    He, QC
    Zheng, QS
    JOURNAL OF ELASTICITY, 1996, 43 (03) : 203 - 225
  • [2] Auxetic properties and anisotropy of elastic material constants of 2D crystalline media
    Jasiukiewicz, Cz.
    Paszkiewicz, T.
    Wolski, S.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (03): : 562 - 569
  • [3] Tensorial Polar Decomposition of 2D fourth-order tensors
    Desmorat, Boris
    Desmorat, Rodrigue
    COMPTES RENDUS MECANIQUE, 2015, 343 (09): : 471 - 475
  • [4] ELASTIC CONSTANTS OF CRYSTALS .2.
    HUNTINGTON, G
    USPEKHI FIZICHESKIKH NAUK, 1961, 74 (03): : 461 - 520
  • [5] 2D Material Liquid Crystals for Optoelectronics and Photonics
    Baldycheva, A.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 194 - 194
  • [6] 2D material liquid crystals for optoelectronics and photonics
    Hogan, B. T.
    Kovalska, E.
    Craciun, M. F.
    Baldycheva, A.
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (43) : 11185 - 11195
  • [7] ELASTIC MODELS OF DEFECTS IN 3D AND 2D CRYSTALS
    Kolesnikova, A. L.
    Gutkin, M. Yu.
    Romanov, A. E.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2017, 51 (02) : 130 - 148
  • [8] Propagation of guided elastic waves in 2D phononic crystals
    Charles, C.
    Bonello, B.
    Ganot, F.
    ULTRASONICS, 2006, 44 : E1209 - E1213
  • [9] STRUCTURE OF THE SPACE OF 2D ELASTICITY TENSORS
    de Saxce, Gery
    Vallee, Claude
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (06): : 1525 - 1537
  • [10] Elastic theory of 1D-quasiperiodic stacking of 2D crystals
    Peng, YZ
    Fan, TY
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (45) : 9381 - 9387