The planar k-means problem is NP-hard

被引:149
|
作者
Mahajan, Meena [1 ]
Nimbhorkar, Prajakta [1 ]
Varadarajan, Kasturi [2 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] Univ Iowa, Iowa City, IA 52242 USA
关键词
Clustering; k-means; Planar graphs; NP-hardness;
D O I
10.1016/j.tcs.2010.05.034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the k-means problem, we are given a finite set S of points in R-m, and integer k >= 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this well-known problem is NP-hard even for instances in the plane, answering an open question posed by Dasgupta (2007) [7]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 21
页数:9
相关论文
共 50 条
  • [1] The Planar k-Means Problem is NP-Hard
    Mahajan, Meena
    Nimbhorkar, Prajakta
    Varadarajan, Kasturi
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5431 : 274 - +
  • [2] Linear problem kernels for NP-hard problems on planar graphs
    Guo, Jiong
    Niedermeier, Rolf
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 375 - +
  • [3] The string barcoding problem is NP-hard
    Dalpasso, M
    Lancia, G
    Rizzi, R
    COMPARATIVE GENOMICS, 2005, 3678 : 88 - 96
  • [4] THE STO-PROBLEM IS NP-HARD
    APT, KR
    BOAS, PV
    WELLING, A
    JOURNAL OF SYMBOLIC COMPUTATION, 1994, 18 (05) : 489 - 495
  • [5] Computation of lucky number of planar graphs is NP-hard
    Ahadi, A.
    Dehghan, A.
    Kazemi, M.
    Mollaahmadi, E.
    INFORMATION PROCESSING LETTERS, 2012, 112 (04) : 109 - 112
  • [6] NP-Hard and k-EXPSPACE-Hard Cast Puzzles
    Iwamoto, Chuzo
    Sasaki, Kento
    Nishio, Kenji
    Morita, Kenichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (11) : 2995 - 3004
  • [7] De Bruijn Superwalk with Multiplicities Problem is NP-hard
    Kapun, Evgeny
    Tsarev, Fedor
    BMC BIOINFORMATICS, 2013, 14
  • [8] Trainyard is NP-Hard
    Almanza, Matteo
    Leucci, Stefano
    Panconesi, Alessandro
    THEORETICAL COMPUTER SCIENCE, 2018, 748 : 66 - 76
  • [9] The real nonnegative inverse eigenvalue problem is NP-hard
    Borobia, Alberto
    Canogar, Roberto
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 522 : 127 - 139
  • [10] De Bruijn Superwalk with Multiplicities Problem is NP-hard
    Evgeny Kapun
    Fedor Tsarev
    BMC Bioinformatics, 14