An autonomic traffic analysis proposal using Machine Learning techniques

被引:1
|
作者
Pacheco, Fannia [1 ]
Exposito, Ernesto [1 ]
Gineste, Mathieu [2 ]
Budoin, Cedric [2 ]
机构
[1] Univ Pau & Pays Adour, LIUPPA, Anglet, France
[2] Thales Alenia Space, Toulouse, France
关键词
Machine Learning; traffic analysis; quality of service; autonomic computing; CLASSIFICATION;
D O I
10.1145/3167020.3167061
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Network analysis has recently become in one of the most challenging tasks to handle due to the rapid growth of communication technologies. For network management, accurate identification and classification of network traffic is a key task. For example, identifying traffic from different applications is critical to manage bandwidth resources and to ensure Quality of Service objectives. Machine learning emerges as a suitable tool for traffic classification; however, it requires several steps that must be followed adequately in order to achieve the goals. In this paper, we proposed an architecture to perform traffic analysis based on Machine Learning techniques and autonomic computing. We analyze the procedures to perform Machine Learning over traffic network classification, and at the same time we give guidelines to introduce all these procedures into the architecture proposed. The main contribution of our proposal is the reconfiguration of the traffic classifier that will change according to the knowledge acquired from the traffic analysis process.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 50 条
  • [1] Darknet Traffic Classification using Machine Learning Techniques
    Iliadis, Lazaros Alexios
    Kaifas, Theodoros
    2021 10TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2021,
  • [2] Network Traffic Classification Techniques and Comparative Analysis Using Machine Learning Algorithms
    Shafiq, Muhammad
    Yu, Xiangzhan
    Laghari, Asif Ali
    Yao, Lu
    Karn, Abin Kumar
    Abdessamia, Oudil
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 2451 - 2455
  • [3] Using machine learning techniques to identify botnet traffic
    Livadas, Carl
    Walsh, Robert
    Lapsley, David
    Strayer, W. Timothy
    31st IEEE Conference on Local Computer Networks, Proceedings, 2006, : 967 - 974
  • [4] Predicting Traffic Flow on Faulty Traffic Detectors Using Machine Learning Techniques
    Bagabaldo, Alben Rome B.
    Gonzalez, Marta C.
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2022: APPLICATION OF EMERGING TECHNOLOGIES, 2022, : 202 - 212
  • [5] Android Ransomware Detection Using Supervised Machine Learning Techniques Based on Traffic Analysis
    Albin Ahmed, Amnah
    Shaahid, Afrah
    Alnasser, Fatima
    Alfaddagh, Shahad
    Binagag, Shadha
    Alqahtani, Deemah
    SENSORS, 2024, 24 (01)
  • [6] Detecting malicious IoT traffic using Machine Learning techniques
    Jayaraman, Bhuvana
    Thai, Mirnalinee T. H. A. N. G. A. N. A. D. A. R. T. H. A. N. G. A.
    Anand, Anirudh
    Nadar, Sri Sivasubramaniya
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2023, 33 (04): : 47 - 58
  • [7] Traffic Profiling in Mobile Networks Using Machine Learning Techniques
    Maciejewski, Henryk
    Sztukowski, Mateusz
    Chowanski, Bartlomiej
    DIGITAL INFORMATION PROCESSING AND COMMUNICATIONS, PT 1, 2011, 188 : 132 - +
  • [8] A Survey of Techniques for Internet Traffic Classification using Machine Learning
    Nguyen, Thuy T. T.
    Armitage, Grenville
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2008, 10 (04): : 56 - 76
  • [9] Tor Traffic Analysis and Detection via Machine Learning Techniques
    Cuzzocrea, Alfredo
    Martinelli, Fabio
    Mercaldo, Francesco
    Vercelli, Gianni
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4474 - 4480
  • [10] Traffic management approaches using machine learning and deep learning techniques: A survey
    Almukhalfi, Hanan
    Noor, Ayman
    Noor, Talal H.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133