Feynman's ratchet;
ecological function;
efficient power;
figure of merit;
optimal performance regions;
finite time thermodynamics;
ENTROPY GENERATION MINIMIZATION;
BROWNIAN MOTORS;
MAXIMUM POWER;
HEAT ENGINES;
EFFICIENCY;
THERMODYNAMICS;
REFRIGERATOR;
TRANSPORT;
LEAKAGE;
FIGURE;
D O I:
10.1515/jnet-2019-0102
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Thermodynamic performance analysis of microscopic Feynman's engine has always been a hot topic, since it can reveal the operating mechanism of the system and give out the suggestions of performance improvement. The present work explores the optimal performance regions of the ratchet operating, respectively, as heat engine and refrigerator. The major purpose is to obtain the optimal performance bunds and provide theoretical guidelines for the designs of practical microscopic ratchet engine systems. Based on an irreversible Feynman's ratchet engine, the optimal power output versus thermal efficiency performance and the optimal cooling load versus COP performance in different operation modes are analyzed. The effects of irreversible heat leakage and major design parameters are also explored. By further introducing the ecological function, efficient power, and figure of merit criteria, performance characteristics of ratchet device with different optimization indexes are analyzed and compared with each other. The optimal performance regions concerning different optimization criteria are obtained. The results show that by reasonably selecting design parameters, Feynman's ratchet can attain the optimal operation conditions for different design purposes.
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Long, Rui
Li, Baode
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Li, Baode
Liu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China