Asymptotic behavior for the Stokes flow and Navier-Stokes equations in half spaces

被引:22
|
作者
Han, Pigong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R China
关键词
Navier-Stokes equations; Weak and strong solutions; Asymptotic behavior; Solution formula; SPATIAL DECAYS; SEMIGROUP;
D O I
10.1016/j.jde.2010.05.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the solution formula in Ukai (1987)[27] for the Stokes equations, we find asymptotic profiles of solutions in L-1 (R-+(n)) (n >= 2) for the Stokes flow and non-stationary Navier-Stokes equations. Since the projection operator P: L-1 (R-+(n)) --> L-sigma(1)(R-+(n)) is unbounded, we use a decomposition for P(u . del u) to overcome the difficulty, and prove that the decay rate for the first derivatives of the strong solution u of the Navier-Stokes system in L-1 (R-+(n)) is controlled by t(-1/2)(1 + t(-n+2/n)) for any t > 0. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1817 / 1852
页数:36
相关论文
共 50 条