Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic Schrodinger Operators

被引:7
|
作者
Yang, Dachun [1 ]
Yang, Sibei [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Musielak-Orlicz-Hardy space; magnetic Schrodinger operator; atom; second-order Riesz transform; maximal inequality; HARDY-SPACES; HEAT KERNEL; COMMUTATORS; BOUNDEDNESS; L(P);
D O I
10.4153/CMB-2014-060-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A:=-(del - i (a) over right arrow).(del - i (a) over right arrow )+V be a magnetic Schrodinger operator on R-n, where (a) over right arrow:= (a(1),(...),a(n)) epsilon L-loc(2)(R-n,R-n) and 0 <= V epsilon L-loc(1)(R-n) satisfy some reverse Holder conditions. Let phi:R(n)x[0,infinity) -> [0,infinity) be such that phi(x,.) for any given x epsilon R-n is an Orlicz function, phi(.,t)epsilon A(infinity)(R-n) for all t epsilon(0,infinity) (the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index I(phi)epsilon(0,1]. In this article, the authors prove that second-order Riesz transforms VA-(1) and (del-i (a) over right arrow)(2)A-(1) are bounded from the Musielak-Orlicz-Hardy space H-phi,H-A(R-n), associated with A, to the Musielak-Orlicz space L-phi(R-n). Moreover, the authors establish the boundedness of VA-(1) on H-phi,H-A(R-n). As applications, some maximal inequalities associated with A in the scale of H-phi,H-A(R-n) are obtained.
引用
收藏
页码:432 / 448
页数:17
相关论文
共 50 条