WAVE PROPAGATION IN DIATOMIC LATTICES

被引:13
|
作者
Qin, Wen-Xin [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
diatomic FPU chain; wave trains; minimax methods; TRAVELING-WAVES; SOLITARY WAVES; EXISTENCE; SOLITONS;
D O I
10.1137/130949609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study periodic traveling waves (wave trains) in diatomic Fermi-Pasta-Ulam chains (FPU). By applying the minimax principle, we demonstrate the existence of two different periodic waveform functions corresponding, respectively, to light and heavy particles. Our approach applies to the FPU beta-model for each wavenumber and each frequency, and to FPU chains with asymptotic quadratic potential for wavenumbers and frequencies satisfying the nonresonance condition. As an application to monatomic lattices, we show for the monatomic soft FPU beta-model the existence of supersonic wave trains with two different waveform functions for adjacent particles, contrary to the nonexistence of supersonic wave trains with only one waveform function.
引用
收藏
页码:477 / 497
页数:21
相关论文
共 50 条
  • [1] Solitary wave propagation in periodic and aperiodic diatomic Toda lattices
    Hornquist, M
    Riklund, R
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (09) : 2872 - 2879
  • [2] WAVE MODULATIONS IN ANHARMONIC DIATOMIC LATTICES
    TSURUI, A
    PROGRESS OF THEORETICAL PHYSICS, 1973, 49 (04): : 1121 - 1129
  • [3] Closed-form solutions for wave propagation in hexagonal diatomic non-local lattices
    Ongaro, F.
    Beoletto, P. H.
    Bosia, F.
    Miniaci, M.
    Pugno, N. M.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2025, 291
  • [4] WAVE PROPAGATION IN ANHARMONIC LATTICES
    TODA, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1967, 23 (03) : 501 - &
  • [5] Wave propagation on hexagonal lattices
    Kapanadze, David
    Pesetskaya, Ekaterina
    GEORGIAN MATHEMATICAL JOURNAL, 2025, 32 (01) : 83 - 91
  • [6] Wave propagation in crystal lattices
    Forsterling, K
    ANNALEN DER PHYSIK, 1934, 19 (03) : 261 - 289
  • [7] Wave propagation in undulated structural lattices
    Trainiti, G.
    Rimoli, J. J.
    Ruzzene, M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 97-98 : 431 - 444
  • [8] SHOCK WAVE PROPAGATION IN CUBIC LATTICES
    TSAI, DH
    BECKETT, CW
    JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (10): : 2601 - &
  • [9] Formulation of an efficient continuum mechanics-based model to study wave propagation in one-dimensional diatomic lattices
    Ghavanloo, Esmaeal
    Fazelzadeh, S. Ahmad
    Rafii-Tabar, Hashem
    MECHANICS RESEARCH COMMUNICATIONS, 2020, 103