A hierarchical Bayesian model for extreme pesticide residues

被引:2
|
作者
Kennedy, Marc C. [1 ]
Roelofs, Victoria J. [1 ]
Anderson, Clive W. [2 ]
Salazar, Jose Domingo [3 ]
机构
[1] Food & Environm Res Agcy, York YO41 1LZ, N Yorkshire, England
[2] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England
[3] Syngenta, Jealotts Hill Int Res Ctr, Bracknell, Berks, England
关键词
Dietary exposure; Supervised trial; Generalized Pareto Distribution; Distribution tails; Extreme value theory; RISK;
D O I
10.1016/j.fct.2010.10.020
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The number of residue measurements in an individual field trial, carried out to provide data for a pesticide registration for a particular crop, is generally too small to estimate upper tails of the residue distribution for that crop with any certainty. We present a new method, using extreme value theory, which pools information from various field trials, with different crop and pesticide combinations, to provide a common model for the upper tails of residue distributions generally. The method can be used to improve the estimation of high quantiles of a particular residue distribution. It provides a flexible alternative to the direct fitting of a distribution to each individual dataset, and does not require strong distributional assumptions. By using a hierarchical Bayesian model, our method also accounts for parameter uncertainty. The method is applied to a range of supervised trials containing residues on individual items (e.g. on individual apples), and the results illustrate the variation in tail properties amongst all commodities and pesticides. The outputs could be used to select conservative high percentile residue levels as part of a deterministic risk assessment, taking account of the variability between crops and pesticides and also the uncertainty due to relatively small datasets. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 232
页数:11
相关论文
共 50 条
  • [1] A Bayesian hierarchical extreme value model for lichenometry
    Cooley, Daniel
    Naveau, Philippe
    Jomelli, Vincent
    Rabatel, Antoine
    Grancher, Delphine
    ENVIRONMETRICS, 2006, 17 (06) : 555 - 574
  • [2] A Bayesian spatial hierarchical model for extreme precipitation in Great Britain
    Sharkey, Paul
    Winter, Hugo C.
    ENVIRONMETRICS, 2019, 30 (01)
  • [3] A hierarchical Bayesian spatio-temporal model for extreme precipitation events
    Ghosh, Souparno
    Mallick, Bani K.
    ENVIRONMETRICS, 2011, 22 (02) : 192 - 204
  • [4] A hierarchical Bayesian non-asymptotic extreme value model for spatial data
    Stolf, Federica
    Canale, Antonio
    ENVIRONMETRICS, 2023, 34 (07)
  • [5] A Bayesian Hierarchical Spatial Copula Model: An Application to Extreme Temperatures in Extremadura (Spain)
    Garcia, J. Agustin
    Pizarro, Mario M.
    Acero, F. Javier
    Parra, M. Isabel
    ATMOSPHERE, 2021, 12 (07)
  • [6] A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain)
    Garcia, J. A.
    Martin, J.
    Naranjo, L.
    Acero, F. J.
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2018, 63 (06): : 878 - 894
  • [7] Integrating Climatic and Physical Information in a Bayesian Hierarchical Model of Extreme Daily Precipitation
    Love, Charlotte A.
    Skahill, Brian E.
    England, John F.
    Karlovits, Gregory
    Duren, Angela
    AghaKouchak, Amir
    WATER, 2020, 12 (08)
  • [8] A Bayesian hierarchical spatio-temporal model for summer extreme temperatures in Spain
    Garcia, Jose Agustin
    Acero, Francisco Javier
    Martinez-Pizarro, Mario
    Lara, Manuel
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (09) : 3393 - 3410
  • [9] Bayesian hierarchical modeling of extreme hourly precipitation in Norway
    Dyrrdal, Anita Verpe
    Lenkoski, Alex
    Thorarinsdottir, Thordis L.
    Stordal, Frode
    ENVIRONMETRICS, 2015, 26 (02) : 89 - 106
  • [10] Spatial Bayesian hierarchical modelling of extreme sea states
    Clancy, Colm
    O'Sullivan, John
    Sweeney, Conor
    Dias, Frederic
    Parnell, Andrew C.
    OCEAN MODELLING, 2016, 107 : 1 - 13