The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials:: Morphological, chemical and cytotoxic evaluation

被引:31
|
作者
Epure, L. M.
Dimitrievska, S.
Merhi, Y.
Yahia, L. H.
机构
[1] Ecole Polytech Montreal, Biomed Engn Inst, Lab Innovat Analys Bioperform, Montreal, PQ, Canada
[2] Univ Montreal, Inst Cardiol, Lab Pathol Expt, Montreal, PQ H3C 3J7, Canada
关键词
hydroxyapatite; composite; cytotoxicity; calcium aluminate;
D O I
10.1002/jbm.a.31377
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hydroxyapatite (HA) and HA-alumina (HA/ Al2O3) composites, with Al2O3 contents of 5, 10, 20, and 30%, were synthesized using a wet precipitation method and sintered at 900 and 1300 degrees C. We investigated the effect of sintering temperature and relative concentration of HA and Al2O3 on the chemical composition, surface morphology, and cytotoxicity of the composite powders. The XRD results show that in the 1300 degrees C composites, HA partially decomposed into CaO which combined with Al2O3 to form different calcium aluminates. For the 900 degrees C composites the CaO phase was not detected, though a Ca/P ratio larger than 1.67 measured by XPS suggests that CaO was present in trace amounts. SEM-EDX analysis indicated that the HA microstructure was affected by the sintering temperature, and this HA is present on the surface of Al2O3 particles. The cytotoxicity of the composites was assessed indirectly using the MTT assay. The short-term effect of leachables was quantified by exposing a L929 mouse fibroblast cell line to the degradation products released by the composites after immersion in the cell culture medium. Degradation products were less toxic to L-929 at lower extract concentrations (10, 50%) than at 100% concentration. Cell viability was also influenced by leachable size. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1009 / 1023
页数:15
相关论文
共 50 条
  • [1] EELS investigation of CVD α-Al2O3, κ-Al2O3 and γ-Al2O3 coatings
    Larsson, A
    Zackrisson, J
    Halvarsson, M
    Ruppi, S
    MICROBEAM ANALYSIS 2000, PROCEEDINGS, 2000, (165): : 235 - 236
  • [2] Effect of Al2O3 on mechanical properties of Ti3SiC2/Al2O3 composite
    Wang, HJ
    Jin, ZH
    Miyamoto, Y
    CERAMICS INTERNATIONAL, 2002, 28 (08) : 931 - 934
  • [3] Effect of Al2O3 Content on Electrical Breakdown Properties of Al2O3/Cu Composite
    Xianhui Wang
    Shuhua Liang
    Ping Yang
    Zikang Fan
    Journal of Materials Engineering and Performance, 2010, 19 : 1330 - 1336
  • [4] Effect of Al2O3 Content on Electrical Breakdown Properties of Al2O3/Cu Composite
    Wang, Xianhui
    Liang, Shuhua
    Yang, Ping
    Fan, Zikang
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2010, 19 (09) : 1330 - 1336
  • [5] Preparation and Properties of a Flexible Al2O3/Al/Al2O3 Composite4
    Tong, Yigang
    Zhou, Zhibin
    Cai, Hui
    Wang, Xueliang
    Wang, Yaping
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [6] Preparation and Characterization of Highly Flexible Al2O3/Al/Al2O3 Hybrid Composite
    Wang, Zhijiang
    Hu, Henry
    Nie, Xueyuan
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [7] Ni/Al2O3 cermet composite materials
    Deng, Z.
    Zhou, X.
    Ying, T.
    Zeng, H.
    2001, South China University of Technology (29):
  • [8] Thermal shock properties of Ti(Al,O)/Al2O3 and TiAl(O)/Al2O3 composite coatings
    Salman, Asma
    Gabbitas, Brian
    Zhang, Deliang
    STRUCTURAL INTEGRITY AND FAILURE, 2011, 275 : 47 - 50
  • [9] Effect of Al2O3 Content on Dielectric Properties of Al2O3/LiTaO3 Composite Ceramics
    Zhang You-Feng
    Zhou Yu
    Jia De-Chang
    Meng Qing-Chang
    JOURNAL OF INORGANIC MATERIALS, 2009, 24 (06) : 1189 - 1192
  • [10] Effect of Al2O3 on the mechanical properties and microstructure of Ti3SiC2/Al2O3 composite
    Wang, HJ
    Jin, ZH
    Miyamoto, Y
    RARE METAL MATERIALS AND ENGINEERING, 2004, 33 (01) : 40 - 42