Researches on Intelligent Traffic Signal Control Based on Deep Reinforcement Learning

被引:3
|
作者
Luo, Juan [1 ]
Li, Xinyu [1 ]
Zheng, Yanliu [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent Transportation; Traffic Signal; Deep Reinforcement Learning; SUMO;
D O I
10.1109/MSN50589.2020.00124
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapidly growing traffic flow exceeds the capacity of the existing infrastructure. It will cause traffic congestion and increase travel time and carbon emissions. Intelligent traffic signal control is a significant element in intelligent transportation system. In order to improve the efficiency of intelligent traffic signal control, the traffic information needs to be collected and processed in real-time. In this paper, we propose a deep reinforcement learning model for traffic signal control. In this model, intersections are divided into several grids of different sizes, which represents the complex traffic state. The switching of traffic signals are defined as actions, and the weighted sum of various indicators reflecting traffic conditions is defined as rewards. The whole process is modeled as Markov Decision Process (MDP), and Convolutional Neural Network (CNN) is used to map the states to rewards. We evaluated the efficiency of the model through Simulation of Urban Mobility (SUMO), and the simulation results proved the efficiency of the model.
引用
收藏
页码:729 / 734
页数:6
相关论文
共 50 条
  • [1] An Intelligent Traffic Signal Control System Based on Deep Reinforcement Learning
    Zhou, Chenming
    Liu, Su
    Li, Xinyu
    Ruan, Junhui
    Gao, Yayu
    2020 INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC), 2020, : 255 - 259
  • [2] Deep Reinforcement Learning-based Traffic Signal Control
    Ruan, Junyun
    Tang, Jinzhuo
    Gao, Ge
    Shi, Tianyu
    Khamis, Alaa
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART MOBILITY, SM, 2023, : 21 - 26
  • [3] Traffic signal control method based on deep reinforcement learning
    Liu Z.-M.
    Ye B.-L.
    Zhu Y.-D.
    Yao Q.
    Wu W.-M.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (06): : 1249 - 1256
  • [4] Deep Reinforcement Q-Learning for Intelligent Traffic Signal Control with Partial Detection
    Romain Ducrocq
    Nadir Farhi
    International Journal of Intelligent Transportation Systems Research, 2023, 21 : 192 - 206
  • [5] Deep Reinforcement Q-Learning for Intelligent Traffic Signal Control with Partial Detection
    Ducrocq, Romain
    Farhi, Nadir
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2023, 21 (01) : 192 - 206
  • [6] Traffic Signal Control System Based on Intelligent Transportation System and Reinforcement Learning
    Hurtado-Gomez, Julian
    David Romo, Juan
    Salazar-Cabrera, Ricardo
    Pachon de la Cruz, Alvaro
    Molina, Juan Manuel Madrid
    ELECTRONICS, 2021, 10 (19)
  • [7] A Deep Reinforcement Learning Approach to Traffic Signal Control
    Razack, Aquib Junaid
    Ajith, Vysyakh
    Gupta, Rajiv
    2021 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH2021), 2021,
  • [8] Deep Reinforcement Learning for Traffic Signal Control: A Review
    Rasheed, Faizan
    Yau, Kok-Lim Alvin
    Noor, Rafidah Md.
    Wu, Celimuge
    Low, Yeh-Ching
    IEEE ACCESS, 2020, 8 : 208016 - 208044
  • [9] Robust Deep Reinforcement Learning for Traffic Signal Control
    Kai Liang Tan
    Anuj Sharma
    Soumik Sarkar
    Journal of Big Data Analytics in Transportation, 2020, 2 (3): : 263 - 274
  • [10] A Survey on Deep Reinforcement Learning for Traffic Signal Control
    Miao, Wei
    Li, Long
    Wang, Zhiwen
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1092 - 1097