Relaxation scheme for the nonlinear Schrodinger equation and Davey-Stewartson systems

被引:27
|
作者
Besse, C
机构
[1] Univ Bordeaux 1, UPRESA 5466, F-33405 Talence, France
[2] Univ Toulouse 3, UFR MIG, F-31062 Toulouse 4, France
关键词
D O I
10.1016/S0764-4442(98)80405-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce a new numerical scheme for the nonlinear Schrodinger equation and the Davey-Stewartson systems. This is a relaxation type;scheme that avoids the resolution of nonlinear systems. We give convergence results for the semi-discret version, locally in time for all data and globally in time for small data. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1427 / 1432
页数:6
相关论文
共 50 条
  • [1] Rigorous derivation of the nonlinear Schrodinger equation and Davey-Stewartson systems from quadratic hyperbolic systems
    Colin, T
    ASYMPTOTIC ANALYSIS, 2002, 31 (01) : 69 - 91
  • [2] ON THE DAVEY-STEWARTSON SYSTEMS
    LINARES, F
    PONCE, G
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (05): : 523 - 548
  • [3] THE DAVEY-STEWARTSON EQUATION IN A COMPLEX
    Carbonaro, P.
    WASCOM 2009: 15TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, 2010, : 68 - 73
  • [4] Ill-posedness for the nonlinear Davey-Stewartson equation
    Caixia, Shen
    Boling, Guo
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (01) : 117 - 127
  • [5] ILL-POSEDNESS FOR THE NONLINEAR DAVEY-STEWARTSON EQUATION
    沈彩霞
    郭柏灵
    Acta Mathematica Scientia, 2008, (01) : 117 - 127
  • [6] Reducing a generalized Davey-Stewartson system to a non-local nonlinear Schrodinger equation
    Eden, Alp
    Erbay, Saadet
    Hacinliyan, Irma
    CHAOS SOLITONS & FRACTALS, 2009, 41 (02) : 688 - 697
  • [7] WAVES IN THE DAVEY-STEWARTSON EQUATION
    BOITI, M
    LEON, J
    PEMPINELLI, F
    INVERSE PROBLEMS, 1991, 7 (02) : 175 - 185
  • [8] Numerical studies for nonlinear Schrodinger equations:: the Schrodinger-Poisson-Xα model and Davey-Stewartson systems
    Besse, C
    Mauser, NJ
    Stimming, HP
    NUMERICAL METHODS FOR HYPERBOLIC AND KINETIC PROBLEMS, 2005, 7 : 71 - 99
  • [9] On the davey-stewartson and ishimori systems
    Hayashi N.
    Mathematical Physics, Analysis and Geometry, 1999, 2 (1) : 53 - 81
  • [10] RESONANT BEHAVIOR IN THE DAVEY-STEWARTSON EQUATION
    GILSON, CR
    PHYSICS LETTERS A, 1992, 161 (05) : 423 - 428