Forman's discrete Morse theory is studied from an algebraic viewpoint, and we show how this theory can be extended to chain complexes of modules over arbitrary rings. As applications we compute the homologies of a certain family of nilpotent Lie algebras, and show how the algebraic Morse theory can be used to derive the classical Anick resolution as well as a new two-sided Anick resolution.
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
Bannai, Eiichi
Bannai, Etsuko
论文数: 0引用数: 0
h-index: 0
机构:
Misakigaoka 2-8-21, Itoshima 8191136, JapanShanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
Bannai, Etsuko
Tanaka, Hajime
论文数: 0引用数: 0
h-index: 0
机构:
Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, JapanShanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
Tanaka, Hajime
Zhu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
机构:
Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Ljubljana, Dept Math, Fac Math & Phys, Ljubljana, SloveniaInst Math Phys & Mech, Ljubljana, Slovenia
Lampret, Leon
Vavpetic, Ales
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Dept Math, Fac Math & Phys, Ljubljana, SloveniaInst Math Phys & Mech, Ljubljana, Slovenia