Mesoscale microscopy and image analysis tools for understanding the brain

被引:24
|
作者
Tyson, Adam L. [1 ]
Margrie, Troy W. [1 ]
机构
[1] UCL, Sainsbury Wellcome Ctr, 25 Howland St, London W1T 4JG, England
基金
英国惠康基金;
关键词
Neuroscience; whole Brain microscopy; Image registration; Segmentation; Visualisation; GENE-EXPRESSION; 3-DIMENSIONAL VISUALIZATION; AXONAL PROJECTIONS; RESOLUTION; FRAMEWORK; ATLAS; RECONSTRUCTION; CONNECTIVITY; TOMOGRAPHY; ANNOTATION;
D O I
10.1016/j.pbiomolbio.2021.06.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Over the last ten years, developments in whole-brain microscopy now allow for high-resolution imaging of intact brains of small animals such as mice. These complex images contain a wealth of information, but many neuroscience laboratories do not have all of the computational knowledge and tools needed to process these data. We review recent open source tools for registration of images to atlases, and the segmentation, visualisation and analysis of brain regions and labelled structures such as neurons. Since the field lacks fully integrated analysis pipelines for all types of whole-brain microscopy analysis, we propose a pathway for tool developers to work together to meet this challenge.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 50 条
  • [1] Deep learning in mesoscale brain image analysis: A review
    Chen, Runze
    Liu, Min
    Chen, Weixun
    Wang, Yaonan
    Meijering, Erik
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
  • [2] Development of Improved Microscopy and Data Analysis Tools for Understanding Multimotor Transport
    Mickolajczyk, Keith J.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 656A - 656A
  • [3] FSL: New tools for functional and structural brain image analysis
    Smith, S
    Bannister, PR
    Beckmann, C
    Brady, M
    Clare, S
    Flitney, D
    Hansen, P
    Jenkinson, M
    Leibovici, D
    Ripley, B
    Woolrich, M
    Zhang, YY
    NEUROIMAGE, 2001, 13 (06) : S249 - S249
  • [4] Development of improved microscopy and data analysis tools for understanding multimotor transport.
    Mickolajczyk, K. J.
    Feng, Q.
    Bernstein, J.
    Crow, L.
    Fricks, J.
    Hancock, W. O.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [5] Tools for multiple granularity analysis of brain MRI data for individualized image analysis
    Djamanakova, Aigerim
    Tang, Xiaoying
    Li, Xin
    Faria, Andreia V.
    Ceritoglu, Can
    Oishi, Kenichi
    Hillis, Argye E.
    Albert, Marilyn
    Lyketsos, Constantine
    Miller, Michael I.
    Mori, Susumu
    NEUROIMAGE, 2014, 101 : 168 - 176
  • [6] Image analysis tools
    不详
    POWDER METALLURGY, 1997, 40 (03) : 166 - 166
  • [7] Ontological Models as Tools for Image Content Understanding
    Kulikowski, Juliusz L.
    COMPUTER VISION AND GRAPHICS, PT I, 2010, 6374 : 43 - 58
  • [8] Image analysis for understanding embryo development: a bridge from microscopy to biological insights
    Luengo-Oroz, M. A.
    Ledesma-Carbayo, M. J.
    Peyrieras, N.
    Santos, A.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2011, 21 (05) : 630 - 637
  • [9] Confocal light microscopy of brain cells and tissue: Image analysis & quantitation
    Turner, JN
    Shain, W
    Szarowski, DH
    Lasek, S
    Sipple, B
    Pace, C
    Al-Kafahi, K
    Can, A
    Roysam, B
    ACTA HISTOCHEMICA ET CYTOCHEMICA, 1999, 32 (01) : 5 - 11
  • [10] Connecto-informatics at the mesoscale: current advances in image processing and analysis for mapping the brain connectivity
    Choi, Yoon Kyoung
    Feng, Linqing
    Jeong, Won-Ki
    Kim, Jinhyun
    BRAIN INFORMATICS, 2024, 11 (01)