Universum Principal Component Analysis

被引:0
|
作者
Chen, Xiao-hong [1 ]
Ma, Di [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
关键词
Dimensionality reduction; Universum learning; Principal component analysis;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a novel dimensionality reduction method is developed based on both the principal component analysis (PCA) and Universum learning. PCA works on the target data, ignoring the Universum-do not belong to either class of interest, may contain useful prior knowledge in the same domain as the problem at hand, which has been proved to be helpful in classification and clustering. The proposed method projects target data and Universum into two orthogonal complement spaces with the aim of minimizing the reconstruct error respectively, thus named as universum principal component analysis (UPCA). Experimental results on the UCI datasets and USPS datasets show its effectiveness compared to traditional PCA.
引用
收藏
页码:236 / 241
页数:6
相关论文
共 50 条
  • [1] Principal Component Projection Without Principal Component Analysis
    Frostig, Roy
    Musco, Cameron
    Musco, Christopher
    Sidford, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [2] Principal component analysis
    Michael Greenacre
    Patrick J. F. Groenen
    Trevor Hastie
    Alfonso Iodice D’Enza
    Angelos Markos
    Elena Tuzhilina
    Nature Reviews Methods Primers, 2
  • [3] Principal component analysis
    Greenacre, Michael
    Groenen, Patrick J. F.
    Hastie, Trevor
    D'Enza, Alfonso Lodice
    Markos, Angelos
    Tuzhilina, Elena
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [4] Principal component analysis
    Bro, Rasmus
    Smilde, Age K.
    ANALYTICAL METHODS, 2014, 6 (09) : 2812 - 2831
  • [5] Principal component analysis
    Jake Lever
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2017, 14 : 641 - 642
  • [6] Principal component analysis
    School of Behavioral and Brain Sciences, University of Texas at Dallas, MS: GR4.1, Richardson, TX 75080-3021, United States
    不详
    Wiley Interdiscip. Rev. Comput. Stat., 4 (433-459):
  • [7] Principal component analysis
    Abdi, Herve
    Williams, Lynne J.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 433 - 459
  • [8] PRINCIPAL COMPONENT ANALYSIS
    WOLD, S
    ESBENSEN, K
    GELADI, P
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1987, 2 (1-3) : 37 - 52
  • [9] Principal component analysis
    Hess, Aaron S.
    Hess, John R.
    TRANSFUSION, 2018, 58 (07) : 1580 - 1582
  • [10] PRINCIPAL COMPONENT ANALYSIS
    ARIES, RE
    LIDIARD, DP
    SPRAGG, RA
    CHEMISTRY IN BRITAIN, 1991, 27 (09) : 821 - 824