DISCOVERING AND LINKING SPATIO-TEMPORAL BIG LINKED DATA

被引:0
|
作者
Zinke, Christian [1 ]
Ngomo, Axel-Cyrille Ngonga
机构
[1] Univ Leipzig, Inst Appl Informat eV, Leipzig, Germany
基金
欧盟地平线“2020”;
关键词
Linked Data; Big Data; Bio-economy;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The growing number of spatiotemporal datasets is an essential driver for bio-economy. Interoperability is needed to ensure efficient use of these data and had been addressed by standardization institutions, such as OGC and AIMS. Both of them promote the use of Semantic Web standards (e.g., GeoSPARQL) as one pillar for interoperability [1]. A significant challenge to strengthen the utility of Semantic Web approaches is linking. Its central goal in the context of spatiotemporal datasets is the (semi-automatic) discovery of geospatial referents, such as events, areas, and places which are not yet linked or georeferenced. While the linking task is intrinsically challenging, it is especially resource-and timeconsuming when processing and linking Semantic Big Data. This paper will demonstrate an approach which improves and automates linking Semantic Big Data and show its potential usage for bio-economy.
引用
收藏
页码:411 / 414
页数:4
相关论文
共 50 条
  • [1] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [2] On discovering moving clusters in spatio-temporal data
    Kalnis, P
    Mamoulis, N
    Bakiras, S
    ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2005, 3633 : 364 - 381
  • [3] Expanding ParaSQL for spatio-temporal (big) data
    Sugam Sharma
    Shashi Gadia
    The Journal of Supercomputing, 2019, 75 : 587 - 606
  • [4] Expanding ParaSQL for spatio-temporal (big) data
    Sharma, Sugam
    Gadia, Shashi
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (02): : 587 - 606
  • [5] Cartography in the Age of Spatio-temporal Big Data
    Wang J.
    2017, SinoMaps Press (46): : 1226 - 1237
  • [6] Discovering Congestion Propagation Patterns in Spatio-Temporal Traffic Data
    2017, Institute of Electrical and Electronics Engineers Inc., United States (03):
  • [7] Spaten: a Spatio-temporal and Textual Big Data Generator
    Doudali, Thaleia Dimitra
    Konstantinou, Ioannis
    Koziris, Nectarios
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 3416 - 3421
  • [8] Visual Exploration of Big Spatio-Temporal Movement Data
    Xu, Jie
    Wang, Wuquan
    Li, Jie
    Zhang, Kang
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 363 - 368
  • [9] Low Complexity Sensing for Big Spatio-Temporal Data
    Lee, Dongeun
    Choi, Jaesik
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 323 - 328
  • [10] Parallel Clustering of Big Data of Spatio-temporal Trajectory
    Hu, Chunchun
    Kang, Xionghua
    Luo, Nianxue
    Zhao, Qiansheng
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 769 - 774