Highly Adaptive Liquid-Solid Triboelectric Nanogenerator-Assisted Self-Powered Water Wave Motion Sensor

被引:13
|
作者
Liu, Hanyun [1 ,2 ]
Xu, Yun [1 ,2 ,3 ]
Xiao, Yu [1 ,2 ]
Zhang, Shaochun [1 ,2 ]
Qu, Changming [1 ,2 ]
Lv, Longfeng [1 ,2 ]
Chen, Huamin [4 ,5 ]
Song, Guofeng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] Beijing Key Lab Inorgan Stretchable & Flexible Inf, Beijing 100083, Peoples R China
[4] Minjiang Univ, Fujian Key Lab Funct Marine Sensing Mat, Fuzhou 350108, Peoples R China
[5] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
self-powered sensing; water wave; contact electrification; energy harvesting; PVC; ENERGY;
D O I
10.1021/acsaelm.2c00537
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Renewable energy has huge potential, and portable electronic devices with self-powered sensing are an inevitable choice in the era of the Internet of Things (IoT). Here, we report a water wave motion sensor rooted in water wave friction, which is a combination of a liquid-solid triboelectric nanogenerator (LS-TENG) and a contact-separation TENG to form an integrated working mode. Combining these two mechanisms for sensing and collecting water wave energy, which specifically are the outermost interface friction with water waves and embedded classic TENG contained, this sensor can indicate the enhancement of water waves under gentle frequency in living environments. Under various water levels and frequencies from low to high, the voltage and current signals were systematically investigated and comparatively analyzed. They can reach about 60 V and 20 mu A, respectively, under a certain degree of a surging wave, which proves the indication ability of the device to specific water conditions, and waveform changes under extremely small water level changes were clearly observable. It is believed that, in the future, there will be dazzling performances in the areas of environmental monitoring and maritime security and navigation, which are very meaningful for people's livelihood.
引用
收藏
页码:3870 / 3879
页数:10
相关论文
共 50 条
  • [1] Self-powered rain droplet sensor based on a liquid-solid triboelectric nanogenerator
    Zeng, Yuanming
    Luo, Yu
    Lu, Yanru
    Cao, Xia
    NANO ENERGY, 2022, 98
  • [2] Self-powered rain droplet sensor based on a liquid-solid triboelectric nanogenerator
    Zeng, Yuanming
    Luo, Yu
    Lu, Yanru
    Cao, Xia
    Nano Energy, 2022, 98
  • [3] Self-Powered Intelligent Water Droplet Monitoring Sensor Based on Solid-Liquid Triboelectric Nanogenerator
    Zhu, Lijie
    Guo, Likang
    Ding, Zhi
    Zhao, Zhengqian
    Liu, Chaoran
    Che, Lufeng
    SENSORS, 2024, 24 (06)
  • [4] A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing
    Wang, Song
    Wang, Yan
    Liu, Dehua
    Zhang, Ziyi
    Li, Wenxiang
    Liu, Changxin
    Du, Taili
    Xiao, Xiu
    Song, Liguo
    Pang, Hongchen
    Xu, Minyi
    SENSORS AND ACTUATORS A-PHYSICAL, 2021, 317
  • [5] Triboelectric nanogenerator as self-powered impact sensor
    Garcia, Cristobal
    Trendafilova, Irina
    Guzman de Villoria, Roberto
    Sanchez del Rio, Jose
    INTERNATIONAL CONFERENCE ON ENGINEERING VIBRATION (ICOEV 2017), 2018, 148
  • [6] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [7] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328
  • [8] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [9] Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior monitoring
    Meng, Xiaoyi
    Cheng, Qian
    Jiang, Xiaobei
    Fang, Zhen
    Chen, Xianxiang
    Li, Shaoqing
    Li, Chenggang
    Sun, Chunwen
    Wang, Wuhong
    Wang, Zhong Lin
    NANO ENERGY, 2018, 51 : 721 - 727
  • [10] An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator
    Dhakar, Lokesh
    Pitchappa, Prakash
    Tay, Francis Eng Hock
    Lee, Chengkuo
    NANO ENERGY, 2016, 19 : 532 - 540