Using Model Selection Criteria to Choose the Number of Principal Components

被引:4
|
作者
Sclove, Stanley L. [1 ]
机构
[1] Univ Illinois, Chicago, IL 60607 USA
来源
关键词
Information criteria; AIC; BIC; Principal components; REGRESSION;
D O I
10.1007/s44199-021-00002-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The use of information criteria, especially AIC (Akaike's information criterion) and BIC (Bayesian information criterion), for choosing an adequate number of principal components is illustrated.
引用
收藏
页码:450 / 461
页数:12
相关论文
共 50 条
  • [1] Using Model Selection Criteria to Choose the Number of Principal Components
    Stanley L. Sclove
    Journal of Statistical Theory and Applications, 2021, 20 : 450 - 461
  • [2] Portfolio selection using the principal components GARCH model
    Katja Specht
    Wolfgang Gohout
    Financial Markets and Portfolio Management, 2003, 17 (4): : 450 - 458
  • [3] Selection of number of principal components for de-noising signals
    Koutsogiannis, GS
    Soraghan, JJ
    ELECTRONICS LETTERS, 2002, 38 (13) : 664 - 666
  • [4] Number selection of principal components with optimized process monitoring performance
    Wang, HQ
    Zhou, HL
    Hang, BL
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4726 - 4731
  • [5] Procedure for the Selection of Principal Components in Principal Components Regression
    Kim, Bu-Yong
    Shin, Myung-Hee
    KOREAN JOURNAL OF APPLIED STATISTICS, 2010, 23 (05) : 967 - 975
  • [6] Selection of the number of components using a genetic algorithm for mixture model classifiers
    Tenmoto, H
    Kudo, M
    Shimbo, M
    ADVANCES IN PATTERN RECOGNITION, 2000, 1876 : 511 - 520
  • [7] Principal components analysis: A multi-trait criteria of selection in Sahiwal cows
    Kannan, DS
    Gandhi, RS
    INDIAN JOURNAL OF ANIMAL SCIENCES, 2004, 74 (11): : 1160 - 1163
  • [8] Unsupervised feature selection using weighted principal components
    Kim, Seoung Bum
    Rattakorn, Panaya
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) : 5704 - 5710
  • [9] Selection of the Number of Principal Components Based on Fault Signal-to-Noise Ratio
    Tang, Xiaochu
    Li, Yuan
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3637 - 3642
  • [10] Improved performance of fault detection based on selection of the optimal number of principal components
    College of Information Engineering, Shenyang Institute of Chemical Technology, Shenyang 110142, China
    Zidonghua Xuebao Acta Auto. Sin., 2009, 12 (1550-1557):