Glaucoma Detection Using Support Vector Machine Method Based on Spectralis OCT

被引:13
|
作者
Wu, Chao-Wei [1 ,2 ]
Chen, Hsin-Yi [3 ,4 ]
Chen, Jui-Yu [5 ]
Lee, Ching-Hung [6 ]
机构
[1] Kaohsiung Med Univ, Grad Inst Med, Coll Med, Kaohsiung 807378, Taiwan
[2] Kaohsiung Med Univ, Kaohsiung Med Univ Hosp, Dept Ophthalmol, Kaohsiung 807378, Taiwan
[3] Fu Jen Catholic Univ Hosp, Dept Ophthalmol, New Taipei 24352, Taiwan
[4] Fu Jen Catholic Univ, Sch Med, Coll Med, New Taipei 242062, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Inst Elect & Control Engn, Hsinchu 30010, Taiwan
[6] Natl Yang Ming Chiao Tung Univ, Dept Elect & Comp Engn, Hsinchu 30010, Taiwan
关键词
optical coherence tomography (OCT); supported vector machine (SVM); glaucoma; NERVE-FIBER LAYER; OPTICAL COHERENCE TOMOGRAPHY; LEARNING CLASSIFIERS; DIAGNOSIS; DISC; CLASSIFICATION;
D O I
10.3390/diagnostics12020391
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Spectralis optical coherence tomography (OCT) provided more detailed parameters in the peripapillary and macular areas among the OCT machines, but it is not easy to understand the enormous information (114 features) generated from Spectralis OCT in glaucoma assessment. Machine learning methodology has been well-applied in glaucoma detection in recent years and has the ability to process a large amount of information at once. Here we aimed to analyze the diagnostic capability of Spectralis OCT parameters on glaucoma detection using Support Vector Machine (SVM) classification method in our population. Our results showed that applying all OCT features with the SVM method had good capability in the detection of glaucomatous eyes (area under curve (AUC) = 0.82), as well as discriminating normal eyes from early, moderate, or severe glaucomatous eyes (AUC = 0.78, 0.89, and 0.93, respectively). Apart from using all OCT features, the minimum rim width (MRW) may be good feature groups to discriminate early glaucomatous from normal eyes (AUC = 0.78). The combination of peripapillary and macular parameters, including MRW_temporal inferior (TI), MRW_global (G), ganglion cell layer (GCL)_outer temporal (T2), GCL_inner inferior (I1), peripapillary nerve fiber layer thickness (ppNFLT)_temporal superior (TS), and GCL_inner temporal (T1), provided better results (AUC = 0.84). This study showed promise in glaucoma management in the Taiwanese population. However, further validation study is needed to test the performance of our proposed model in the real world.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Comparison of Different Machine Learning Classifiers for Glaucoma Diagnosis Based on Spectralis OCT
    Wu, Chao-Wei
    Shen, Hsiang-Li
    Lu, Chi-Jie
    Chen, Ssu-Han
    Chen, Hsin-Yi
    DIAGNOSTICS, 2021, 11 (09)
  • [2] Identification of diabetic glaucoma using the colorimetric method Laguna ONhE and OCT Spectralis
    Gonzalez-Hernandez, Marta
    Mesa-Lugo, Fatima
    Rodriguez-Talavera, Ivan
    Pareja-Rios, Alicia
    Guedes-Guedes, Isabel
    Estevez-Jorge, Beatriz
    Trujillo-Blanco, Marciela
    Cordova-Villegas, Roberto
    Espinoza-Gonzalez, Juan
    Siguero-Martin, Leticia
    Goya-Gonzalez, Carolina
    Rodriguez-Dominguez, Maria
    de la Rosa, Manuel Gonzalez
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (09)
  • [3] Identification of Glaucoma in Diabetics Using the Laguna-ONhE Colourimetric Method and OCT Spectralis
    Gonzalez-Hernandez, Marta
    Betancor-Caro, Nisamar
    Mesa-Lugo, Fatima
    Rodriguez-Talavera, Ivan
    Pareja-Rios, Alicia
    Guedes-Guedes, Isabel
    Estevez-Jorge, Beatriz
    Trujillo-Blanco, Maricela
    Cordova-Villegas, Roberto
    Espinoza-Gonzalez, Juan
    Siguero-Martin, Leticia
    Goya-Gonzalez, Carolina
    Rodriguez-Dominguez, Maria
    Gonzalez-Hernandez, Daniel
    de la Rosa, Manuel Gonzalez
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (18)
  • [4] Local Binary Pattern Features Based Detection of Glaucoma Using Support Vector Machine Classifier
    Nirmala, K.
    Venkateswaran, N.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (06) : 1370 - 1378
  • [5] LEAK DETECTION METHOD BASED ON SUPPORT VECTOR MACHINE
    Fan XiaoJing
    Zhang LaiBin
    Liang Wei
    Wang ZhaoHui
    IPC2008: PROCEEDINGS OF THE ASME INTERNATIONAL PIPELINE CONFERENCE - 2008, VOL 1, 2009, : 517 - 522
  • [6] A multiuser detection method based on support vector machine
    Yang, T
    Xie, JY
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 373 - 375
  • [7] GLAUCOMA DIAGNOSIS USING SUPPORT VECTOR MACHINE
    Thangaraj, Vigneswaran
    Natarajan, V.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2017, : 394 - 399
  • [8] A Novel Smoke Detection Method Using Support Vector Machine
    Maruta, Hidenori
    Nakamura, Akihiro
    Kurokawa, Fujio
    TENCON 2010: 2010 IEEE REGION 10 CONFERENCE, 2010, : 210 - 215
  • [9] An malicious email detection method based on support vector machine
    Hong, P
    Jun, W
    Wu, TF
    Zhang, DN
    2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 217 - 220
  • [10] Intrusion Detection Method Based on Classify Support Vector Machine
    Gao, Meijuan
    Tian, Jingwen
    Xia, Mingping
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 391 - 394