Experimental Evaluation of Computer Vision and Machine Learning-Based UAV Detection and Ranging

被引:6
|
作者
Wei, Bingsheng [1 ]
Barczyk, Martin [1 ]
机构
[1] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G IH9, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
UAVs; computer vision; detection; machine learning; neural networks; CNN; TensorFlow; darknet; TIME;
D O I
10.3390/drones5020037
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We consider the problem of vision-based detection and ranging of a target UAV using the video feed from a monocular camera onboard a pursuer UAV. Our previously published work in this area employed a cascade classifier algorithm to locate the target UAV, which was found to perform poorly in complex background scenes. We thus study the replacement of the cascade classifier algorithm with newer machine learning-based object detection algorithms. Five candidate algorithms are implemented and quantitatively tested in terms of their efficiency (measured as frames per second processing rate), accuracy (measured as the root mean squared error between ground truth and detected location), and consistency (measured as mean average precision) in a variety of flight patterns, backgrounds, and test conditions. Assigning relative weights of 20%, 40% and 40% to these three criteria, we find that when flying over a white background, the top three performers are YOLO v2 (76.73 out of 100), Faster RCNN v2 (63.65 out of 100), and Tiny YOLO (59.50 out of 100), while over a realistic background, the top three performers are Faster RCNN v2 (54.35 out of 100, SSD MobileNet v1 (51.68 out of 100) and SSD Inception v2 (50.72 out of 100), leading us to recommend Faster RCNN v2 as the recommended solution. We then provide a roadmap for further work in integrating the object detector into our vision-based UAV tracking system.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Remote fruit fly detection using computer vision and machine learning-based electronic trap
    Molina-Rotger, Miguel
    Moran, Alejandro
    Miranda, Miguel Angel
    Alorda-Ladaria, Bartomeu
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [2] Machine Learning-based Jamming Detection for IEEE 802.11: Design and Experimental Evaluation
    Punal, Oscar
    Aktas, Ismet
    Schnelke, Caj-Julian
    Abidin, Gloria
    Wehrle, Klaus
    Gross, James
    2014 IEEE 15TH INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS (WOWMOM), 2014,
  • [3] Comparison of Detection Methods based on Computer Vision and Machine Learning
    Jia, Wenjuan
    Jiang, Yongyan
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC, CONTROL AND AUTOMATION ENGINEERING (MECAE 2017), 2017, 61 : 386 - 390
  • [4] Computer Vision and Machine Learning-Based Predictive Analysis for Urban Agricultural Systems
    Kempelis, Arturs
    Polaka, Inese
    Romanovs, Andrejs
    Patlins, Antons
    FUTURE INTERNET, 2024, 16 (02)
  • [5] Introduction to Computer Vision and Real Time Deep Learning-based Object Detection
    Shanahan, James G.
    Dai, Liang
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3523 - 3524
  • [6] An Evaluation of Machine Learning-Based Methods for Detection of Phishing Sites
    Miyamoto, Daisuke
    Hazeyama, Hiroaki
    Kadobayashi, Youki
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 2009, 5506 : 539 - 546
  • [7] Introduction to Computer Vision and Real Time Deep Learning-based Object Detection
    Shanahan, James G.
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3515 - 3516
  • [8] Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction
    Chen, Biao
    Chen, Chaoyang
    Hu, Jie
    Sayeed, Zain
    Qi, Jin
    Darwiche, Hussein F.
    Little, Bryan E.
    Lou, Shenna
    Darwish, Muhammad
    Foote, Christopher
    Palacio-Lascano, Carlos
    SENSORS, 2022, 22 (20)
  • [9] A Deep Learning-Based Experiment on Forest Wildfire Detection in Machine Vision Course
    Wang, Lidong
    Zhang, Huixi
    Zhang, Yin
    Hu, Keyong
    An, Kang
    IEEE ACCESS, 2023, 11 : 32671 - 32681
  • [10] Autonomous UAV Chasing with Monocular Vision: A Learning-Based Approach
    Jin, Yuxuan
    Song, Tiantian
    Dai, Chengjie
    Wang, Ke
    Song, Guanghua
    AEROSPACE, 2024, 11 (11)